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Conference Aims and Scope

Calculemus! Let us calculate! These are Leibniz’ famous words. He
would probably not have imagined that about three centuries later al-
most anybody would actually rely on computations in his/her everyday
life.

Especially since the development of the so-called personal computer in
the '80s, computing has penetrated the several levels of our society, go-
ing from scientific research to the organization of our social lives. De-
spite their widespread application, the computing sciences remain hid-
den behind layers of so-called user-friendly interfaces and require spe-
cialized knowledge.

The number of researchers working in fields related to computing is
growing rapidly in many different directions. As Mahoney once stated,
“the computer is not one thing but many different things, and the same
holds true of computing”. As a consequence, the computing sciences
collect the most diverse complex of experts: philosophers, logicians, his-
torians, mathematicians, computer scientists, programmers, engineers.
The number of involved subjects grows accordingly: from the founda-
tional issues to their applications; from the philosophical questions to
problems of realizability and design of specifications; from the theoret-
ical studies of computational barriers to the relevance of machines for
educational purposes.

Given the significance of computing for modern society, the relevance of
its history and philosophy can hardly be overestimated. Both the history
and philosophy of computing only started to develop as real disciplines in
the '80s and ’90s of the previous century, with the foundation of journals
(e.g. the IEEE Annals on the History of Computing, Minds and Machines
and the like) and associations (SIGCIS, CAP, ...), and the organization
of conferences and workshops on a regular basis. A historical aware-
ness of the evolution of computing not only helps to clarify the complex
structure of the computing sciences, but it also provides an insight in
what computing was, is and maybe could be in the future. Philosophy,
on the other hand, helps to tackle some of the fundamental problems
of computing, going from the limits of the “mathematicizing power of
homo sapiens” to the design of feasible and concrete models of inter-



active processes. The aim of this conference is to bring together these
two streams: we are strongly convinced that an interplay between the
researchers with an interest in the history and philosophy of computing
can crucially add to the maturity of the field.
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Schedule

MONDAY 07 NOVEMBER

08:30 - 09:30 Registration and Coffee
09:30 - 10:00 Opening: Liesbeth de Mol & Giuseppe Primiero

10:00 - 11:00 Invited Lecture
William Aspray - Three topics in the History of Computing
chair: Gerard Alberts

11:00 - 11:30 Coffee break

Contributed papers

chair: Maarten Bullynck

11:30 - 12:00 Valery Shilov & Vladimir Kitov - Mechanical brain in the XIX cen-
tury: Logical machines of Alfred Smee

12:00 - 12:30 Izabela Bondecka-Krzykowska - First calculating machines in
Poland

12:30 - 13:00 Marie D’'Udekem-Gevers — A long history of automation : from its
origins to the computer

13:00 - 14:30 Lunch

Contributed papers

chair: Teresa Numerico

14:30 - 15:00 Julian Wilson - The Max Newman Collection of Alan Turing’s Off-
prints: a bibliographical enquiry.

15:00 - 15:30 Guido Gherardi - Alan Turing and the foundations of computable
analysis

15:30 - 16:00 Ofra Rechter & Eli Dresner — From Symbol to ‘Symbol’: Turing,
Hilbert and the Quasi-concreteness of Signs

16:00 - 16:30 Coffee Break

Contributed papers

chair: Erik Myin

16:30 - 17:00 Rogier De Langhe — Simulation and theory choice
17:00 - 17:30 Philip Nickel - Artificial Testimony



17:30 - 18:00 Coffee Break

18:30 - 19:30 Invited Lecture
Stephen Wolfram - Making the World Computable
chair: Martin Davis

19:30 - 20:30 Drinks



TUESDAY 08 NOVEMBER

09:00 - 10:00 Invited Lecture
Martin Davis — Universality is Ubiquitous
chair: Liesbeth De Mol

10:00 - 10:30 Coffee Break

Contributed papers

chair: Marie D’Udekem-Gevers

10:30 - 11:00 Sten Henriksson - A History of the Stack

11:00 - 11:30 Helena Durnova - Language for algorithms, or algorithmic lan-
guage?

11:30 - 12:00 Maarten Bullynck - Computation/Communication. A parallel
glance on the transformations of the computer.

12:00 - 13:30 Lunch

13:30 - 14:30 Invited Lecture

Fairouz Kamareddine - From the Foundation of Mathematics to the Birth of Com-
putation

chair: Raymond Turner

14:30 - 15:00 Coffee Break

Contributed papers

chair: Jean-Paul van Bendegem

15:00 - 15:30 Sam Sanders — Computing the Infinite

15:30 - 16:00 Anthony Moore & Kevin Kirby - Reimagining Time in Computing:
Reservoirs and Aural Arithmetics

16:00 - 16:30 Duilio D’Alfonso - Kolmogorov Complexity and Information The-
ory: The meaning of being minimal

16:30 - 17:00 Coffee Break



Contributed papers

chair: Dagmar Provijn

17:00 - 17:30 Teresa Numerico — The computer between Computationalism and
Cybernetics: the crucial role of Turing and von Neumann, and why they were ig-
nored

17:30 - 18:00 John Geske — From the Church-Turing Thesis to the Triumph
of the Von-Neumann Architecture: The Serialization of Philosophic Thought in
Computer Science

19:00 - 20:00 Lecture/Performance
Co-organised with IPEM
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WEDNESDAY 09 NOVEMBER

09:00 - 10:00 Invited Lecture

Sybille Kramer - Mathematizing power, formalization and the diagrammatical
mind, or: What does Computation mean?

chair: Benedikt Lowe

10:00 - 10:30 Coffee Break

Contributed papers

chair: Maarten van Dyck

10:30 - 11:00 Wolfgang Brand - Models, Experiments and Computing: A His-
torical Case Study of the Design of the Membrane Roof of the Munich Olympic
Stadium using the first Supercomputers

11:00 - 11:30 Giuditta Parolini - Making and Remaking the Statistical Tables
for Biological, Agricultural and Medical Research

11:30 - 12:00 Christopher Belanger - Chaos, Prediction, and Computation: Re-
habilitating Laplacean Determinism

12:00 - 13:30 Lunch

13:30 - 14:30 Invited Lecture
Giovanni Sambin - Computability without Turing Machines
chair: Fairouz Kamareddine

14:30 - 15:00 Coffee Break

Contributed papers

chair: Liesbeth de Mol

15:00 - 15:30 Pierre Mounier-Kuhn - Computer science in France: a controver-
sial emergence

15:30 - 16:00 Viola Schiaffonati and Mario Verdicchio - Is Computer Science
Made Scientific by its Experiments?

16:00 - 16:30 Raffaele Mascella - Programming languages as a revealing en-
terprise in computer science

16:30 - 17:00 Coffee Break
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Contributed papers

chair: Peter Verdée

17:00 - 17:30 Francisco Herndndez-Quiroz - Logics of programs as a fuelling
force for semantics

17:30 - 18:00 Walter Dean - On models of computation and the analysis of fea-
sibility

19:00 - 22:00 Conference Dinner
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THURSDAY 10 NOVEMBER

10:00 - 11:00 Invited Lecture
Raymond Turner - Towards a Philosophy of Computing Science
chair: Giovanni Sambin

11:00 - 11:30 Coffee Break

Contributed papers

chair: Giuseppe Primiero

11:30 - 12:00 Joscha Bach - No Room for the Mind: Enactivism in Artificial
Intelligence

12:00 - 12:30 Giovanni Camardi - Computation, Information and Computer Sim-
ulations

12:30 - 13:00 Federico Gobbo & Marco Benini — From Computing Machineries
to Cloud Computing: The Minimal Levels of Abstraction of Inforgs through His-
tory

13:00 - 13:30 Closing
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List of Invited Talks

Three Topics in the History of Computing

William Aspray
School of Information, University of Texas, Austin, US
bill@ischool.utexas.edu

This paper addresses three historiographic issues related to computing. The
first topic concerns the pre-history and post-history of the development of the
concept of computability and of recursive function theory. This section examines
little studied antecedents in mathematics and philosophy to the development of
mathematical constructivity, and advocates the application to the study of theo-
retical computer science an historical approach concerning scholarly communi-
ties and intellectual agendas first proposed by the late Michael Mahoney. The
second topic concerns the concepts of information domain, information business,
and information society. This section reintroduces a simple analytical mapping
device introduced in the 1980s but largely forgotten today, and it suggests how
historians of computing could profit from being more familiar with related work
by historians of libraries and museums as well as by critical theorists. The third
topic concerns the use of history in the study of everyday information seeking
behavior. It suggests how historians of computing can broaden and enrich their
work through a critical examination of the role of the Internet in everyday life,
informed by work of information studies scholars, sociologists, and phenomenol-
ogists.

Universality is Ubiquitous

Martin Davis

Courant Institute, NYU
Visiting Scholar, UC Berkeley
martin@eipye.com

The work of Turing, Post, Church, Godel, and Kleene during the 1930s funda-
mentally altered our notion of the nature of computation. I will discuss this in
terms of the theoretical underpinnings of the development of all-purpose com-
puters and of modern computer science. I will go on to speculate about the role
of computation in the human mind and in biological evolution.
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From the foundation of mathematics to the birth of computation

Fairouz Kamareddine

School of Mathematical and Computer Sciences, Heriot-Watt University, Ed-
inburgh, UK

fairouz@macs.hw.ac.uk

Mathematics is old, Logic is old, but in some sense, many basic ideas of the
foundation of computer science are old too. For example, that proof checking
(or type checking) is decidable but proof construction (or type inference) is not,
was hinted at by Aristotle. In this talk, I go through some of the developments in
mathematics and logic which influenced the creation of some computer science
ideas in the 20th century. In particular, I discuss how the need for more precision
and formality in the 18th century, led to the development of logic in the 19th
century, to the work of Frege and the discovery of Russell’s paradox. I then
discuss the use of type theory (a concept that was already implicit in Euclid’s
Geometry 325 B.C.) by Russell to avoid the paradox and explain the development
and the influence of types in computation.

Mathematicizing power, formalization, and the diagrammatical mind or:
What does ‘computation’ mean?

Sybille Kramer
Institut fir Philosophie, Freie Universitat Berlin, Germany
sybkram@zedat. fu-berlin.de

In order to understand ‘computation’, we must clarify three of its essential as-
pects:

(i) In computation we do not operate directly with numbers or quantities,
but rather with symbols or signs, and we do so in a manner dependent
upon rules which do not themselves refer to the meaning of those signs.
This is the guiding idea behind ‘formalization’, first developed by Gottfried
Wilhelm Leibniz: Mind can be performed without interpretation and con-
sciousness.

(ii) This formalization, which is crucial to computation, is a modality of visu-
alization, an ‘imaging procedure’ grounded in the interaction of hand and
eye. Algebraic operations with characters depend upon perception just
as much as geometric operations with figures. Mathematics is impossible
without intuition, and therefore also impossible without the use of per-
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ceptible forms of graphism such as signs and figures. This insight can be
found in Plato, Descartes and Wittgenstein.

(iii) Computation is an activity of the ‘diagrammatical mind’. Diagrammatical
graphism emerges through the interaction of surface, line, and point. No-
tations, graphs, diagrams, and maps belong to the realm of diagrammatics.
By ‘diagrammatics’ we mean: by aid of spatial relations non-spatial epis-
temic connections are not only depicted but explored, generated and even
constituted. These ideas are developed in the work of Lambert, Kant and
Peirce.

The concept of ‘computation’ can be characterized by the ‘locus’, where (i) sym-
bolism, (ii) visualization and (iii) diagrammatics intersect.

Computability without Turing Machines

Giovanni Sambin
Dipartimento di Matematica Pura e Applicata, Universitd di Padova, Italy
sambin@math.unipd.it

Mathematics is born by abstraction from reality. In a dynamic view, the choice
of a specific foundation of mathematics amounts to a decision of what kind of
information is considered relevant in the process of abstraction. In this sense,
all of mathematics, and constructive mathematics especially, is linked with infor-
mation science.

I will report on a 25-year-long experience in developing constructive (by which
I mean both intuitionistic and predicative) topology. I will show in particular
in which precise sense it can be conceived as including an abstract theory of
computation, without Turing machines and codings. A crucial role is played by
our choice for a minimalist foundation (introduced by Milly Maietti and myself),
whose main novelty is the presence of two different levels of abstraction (one for
computations and one for mathematics) and of their interaction.

I will also argue that the study of interactions between different levels, or logical
types, in general could be the road leading us to computability beyond Turing
machines.
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Towards a Philosophy of Computing Science

Raymond Turner

School of Computer Science and Electronic Engineering, University of Essex,
UK

turnr@essex.ac.uk

The Philosophy of Computer Science is concerned with philosophical issues that
arise from reflection upon the nature and practice of the academic discipline of
Computer Science. In this talk we shall consider a group of interrelated ques-
tions that emanate from the theoretical end of the subject. More explicitly:

I. How is a programming language determined? What is the appropriate role
of formal semantics?

II. Are programming languages mathematical objects? What is the ontologi-
cal status of programs? Are they abstract objects?

III. What is the logical substance of specification? Do specifications act like
definitions in mathematics, or is something else going on?

IV. Does the notion of correctness relative to a specification depend upon the
nature of the artifact? More specifically, is it different for abstract and
concrete artifacts?

V. What is the role of types in computer science?

VI. What is abstraction in computer science? How is it related to abstraction
in mathematics?

VII. Is computational thinking just a restricted form of mathematical thinking?
While it may be the case that some of these questions, when unpacked,
are neither substantial nor even well formulated, finding this out is part of
the philosophical task.

Making the World Computable

Stephen Wolfram
Wolfram Research
s.wolfram@wolfram.com

Evening lecture through video conferencing.
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Special Event

On Tuesday, November 8 an evening lecture followed by two demonstrations or-
ganised in collaboration with IPEM.

Computing embodied experiences with Music

Prof. dr. Marc Leman, Pieter-Jan Maes, Luc Nijs
IPEM, Institute for Psychoacoustics and Electronic Music, Ghent University
http://www.ipem.ugent.be/

Recent brain research provides evidence that music modifies the brain on the
basis of a coupled action-perception (or hearing-doing) system. The work of my
team so far been pushing the frontiers of musical action-perception research by
linking the basic concepts of ‘musical gesture’ and ‘music mediators’ to compu-
tational environments. We focus on two types of music mediators:

1. the human body as the natural mediator, and

2. technology as the artificial mediator, where the latter is seen as an exten-
sion of the human body.

Mediators allow the human mind to construct new types of realities in which new
meaning formation is possible. Using computational tools, we aim at extending
these realities. This approach will be illustrated by means of two demonstrators.
A first demonstrator is the Music Paint Machine. This is a system that translates
sound and movement of a musician into visuals. The second demonstrator is the
Conduction Master. This is a system that hooks into the action-perception loop
such that the loop can be extended and modified. The audience can test the
demonstrators.
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Abstracts of Contributed Talks

No Room for the Mind: Enactivism in Artificial Intelligence

Joscha Bach

Berlin School of Mind and Brain
Humboldt-University of Berlin
joscha.bach@gmail.com

The philosophical tenet of enactivism has recently risen in popularity; it has
even gained considerable traction within cognitive science in general, and Ar-
tificial Intelligence in particular (e.g., [13]). It is often associated with notions
of an extended mind [5] and embodied cognition; however, in its radical form, it
goes beyond these concepts. At enactivism’s core lies the notion of an inextrica-
ble connection between mind and environment. The various paradigms in psy-
chology, cognitive science or artificial intelligence (including the extended mind)
each posit different interfaces between mind and world (respectively provided by
nerve endings, senses, sensory-motor interaction, subcortical brain structures,
qualia, and so on) and consequently arrive at slightly different (but not necessar-
ily incompatible) conceptualizations of what constitutes a mind, mental activity,
and interaction with the world. Radical enactivism is different: it eschews such
an interface, and instead suggests that minds supervene over the interaction of
an agent’s body with its environment. It denies the role of internal representa-
tions (knowledge, thoughts, dreams and so on) and instead relocates cognition
from the brain’s information processing into the world.

Enactivism rejects the idea that the mind is reducible to a formal (i.e., ultimately
computational) model, which puts it closer to phenomenalist traditions in phi-
losophy than to the more widespread "mind as machine” paradigm of cognitive
science [4]. Enactivism’s growing traction in cognitive science can only be ex-
plained by a coincidence: Computational modeling of the mind has experienced
a change in focus during the last 15 years, from classical artificial intelligence
(AI) architectures towards robotics, reflecting a growing research interest into
the effects of situatedness, interactivity and affordances [9] on cognition. The
proponents of embodied systems hope to overcome the problem of the old gener-
ation of expert systems (see, for instance, [2, 7]) by replacing manually entered,
rule-based knowledge with situated, autonomous exploration of the world, driven
by the artificial agent itself. This alone does not entail a paradigmatic shift in the
philosophy of AI. Embodied agents may be simply proposed as an engineering
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solution to the problem of knowledge acquisition, while the mind is still consid-
ered to be supervenient over the computer’s (or brain’s) information processing.
Embodied cognition may easily be taken one step further, by integrating the tool-
use and immediate environment in a model of agency. This notion of extended
mind may posit a new research paradigm, but it does not present any challenge
to the idea of Al itself. Enactivism, however, is a much more radical idea than ex-
tending agency and intentionality beyond an agent’s skin. Moderate proponents
of an extended mind will grant that the bulk of cognition takes place within the
agent itself, and involves the representations formed about the external and in-
ternal environment of the agent (even if the agent may ‘outsource’ a part of the
processing, and of the representations to its surroundings). According to enac-
tivism, the mind does not supervene over the activity of its substrate (i.e., the
nervous system, the body and perhaps a slice of the world), but over the interac-
tion between body and physical reality. Many researchers in cognitive robotics
fall prey to a misunderstanding: they take enactivism’s account of embodied cog-
nition to be a philosophical manifesto for exploring autonomous agents in richly
structured environments [1, 12], and require physical scenarios instead of sim-
ulations because of the well-known difficulties of adding the required depth to
simulated worlds. Unfortunately, this is not the case, because Al and enactivism
are fundamentally incompatible. At the heart of this incompatibility lies an epis-
temological problem: Robots and situated Al architectures interact with their
environment through an opaque interface that makes it impossible for the agent
to discern the ‘reality’ behind the data patterns that are constitutive to that inter-
action. No robot can know whether its physical environment has been replaced
a simulation, or its simulation by another simulation, as long as the structural
properties of the data at its interface are the same. To an Al researcher, the
world is simply a provider of richly structured information, but to an enactivist,
it is a directly accessible reality, beyond information. According to enactivism,
no Al researcher can ever hope to build an information processing system (i.e., a
robot or an Al architecture) with a true mind, because minds require something
that reaches beyond any information processing, can not be expressed by formal
theories and computational models, will never be subjugated by algorithms and
data structures. Minds require the direct touch with the essence of reality itself,
and according to enactivism, the physical reality cannot be reduced to informa-
tion processing [3, 6]. There seem to be important insights taught by enactivism
to robotics, especially that it is possible for a system to possess skills without
representing them informationally. These ‘embodied’ skills, as demonstrated for
instance in passive walkers [11], seem to demonstrate a paradigm that extends
into higher level cognition, without ever losing sight of the problem of ground-
ing [10]. However, these skills are only superficially more complex than for, for
instance, the ‘knowledge’ that a stone needs to fall in a ballistic arc. It does not
exhibit features of higher-level control, and it cannot do so, because this would
require internal states. Cognition is not an elaboration of a mechanical reflex.
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As I will discuss in more detail, enactivist embodiment does not capture cognitive
processing - instead, it diminishes cognition to a mindless embodimentalism. I
am going to argue that a detailed response to enactivism appears to be worth-
while, because it will force us to clarify and reflect upon the epistemological
assumptions behind Al and the implied relationship between reality and compu-
tation.
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First calculating machines in Poland

Izabela Bondecka-Krzykowska

Adam Mickiewicz University

Department of Mathematics and Computer Science
Poznan, Poland

izab@amu.edu.pl

The history of mechanical computation is long and interesting, but very often this
story is limited to inventors from Western Europe: Schickard, Pascal, Leibniz and
their successors. The aim of this paper is to present the calculating machines
built in Poland (Eastern Europe) which were known in contemporary Europe.
The machines were constructed in 19*" century by three inventors: Abraham
Stern, Chaim Stonimski and Izrael Staffel. All of them spent most of their life in
Warsaw (the present capital of Poland) which at that time was part of the Russian
Empire.

Abraham Stern was as a splendid inventor. He presented his calculating ma-
chines a couple of times at the meetings of the Royal Warsaw Society of the
Friends of Science (predecessor of the Polish Academy of Science). His first
machine for four arithmetic operations only was presented in December 1812,
the second machine for extracting square roots in January 1817 and finally the
combined machine for four operations and square roots in April 1818. Stern’s
machines were highly valued but they were never manufactured, maybe because
of its intricate mechanism which resulted in the high costs of production. But
in 1844 a well-known Swedish producer of arythmometers Willgodt T. Odhner
familiarized with Stern’s inventions and utilized it later in his own constructions
which were mass-produced.

Chaim Stonimski was a talented inventor. Among many Stonimski’s inventions
calculating machines were worth noting. He invented and produced two calcu-
lating machines, one for addition and subtraction, and the other one for multi-
plication. The most interesting is the other one - a simple device, whose con-
struction was based on a theorem in number theory. This theorem, named after
its inventor, enabled Stonimski to arrange the table of numbers, which was the
base of construction for the calculating machine. Stonimski’s machine was a box
of the size: 40cm x 33cm X 5em. It was rather simple to use it. The multipli-
cand was set on the lowermost row of apertures with handles mounted on the
cover. After operation the products of all ranks were displayed in rows of aper-
tures 4*" — —11*": in the 4** row there was the product of multiplication by 2,
the 5" row by 3, the 6*" row by 4 etc. Thanks to the usage of the mentioned
theorem Stonimski’s machine had a very simple construction and was cheap. At
that time existed only a few calculating machines which were based on such a
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good theoretical background. Unfortunately the machine did not survive to our
times.

Another machine which did not survive to the present day is an invention of
clockmaker Abraham Staffel. He designed and built in 1845 a calculating ma-
chine for four basic arithmetical operations, exponentiation and extracting square
roots. The modern (in those days) construction of the machine enabled perform-
ing not only simple calculation but also calculating more complicated expres-
sions like this:

a+bt+c—d—e+(gxh)—m?
n

The machine of Abraham Staffel was presented at least at three exhibitions. At
the exhibition in Warsaw in 1845 Staffel received silver medal for his invention.
In 1846 the machine was presented to Russian Academy of Sciences in St. Pe-
tersburg. Two famous mathematicians, V. Bunyakovski and B. Jacobi, gave it a
very positive opinion and Staffel was awarded a Demidov prize (amounting of
1500 rubles). The machine was also presented at The Great Exhibition in Lon-
don in 1851 in one group with arithmometer of Xavier Thomas de Colmar. Two
machines were awarded: Staffel’s and Colmar’s.

At the end of his life Staffel handed over his invention to the Russian Academy
of Sciences. After the collapsing of the tsarism the collection of Academy broke
down. Probably the Staffel’s machine was destroyed then and did not survive to
our times.

Stern’s, Stonimski’s and Staffel’s inventions were not the oldest constructions
of such type in Europe, but were equal to calculating machines produced in
Western Europe in those days. The experts assessed Polish constructions as
very good and rewarded them many times during the international exhibitions.
So the “eastern thread” of the history of mechanical computing in Europe is
worth talking about.
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For centuries, the design and planning process in architecture was based on
building models and conducting experiments with them. Lacking computing de-
vices and limited capabilities of the early computing machinery available, pre-
vented widespread use of numerical computations and simulations in architec-
ture and civil engineering. The advent of the electronic high speed computer
during the late 1940s and early 1950s allowed architects and civil engineers for
the first time to study their designs using numerical methods.

The design of the membrane roof of the stadium for the 1972 Olympic Games in
Munich was one of the first major projects in which numerical simulations played
a crucial role. The architect Frei Otto - head of the Institute for Lightweight
Structures at the University of Stuttgart - had been working and experimenting
for many years with lightweight tensile and membrane structures, space frames
and their structural efficiency. Otto’s design ideas where transformed by Gnter
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Behnisch and Jorg Schlaich into a piece of landmark membrane architecture of
glass and steel.

This case study will focus on the transition period where the architects started
to abandon their physical models for evaluating constructional aspects in favor
of computational models. The Munich Olympic Stadium’s tent-shaped roof acts
as the showcase on how numerical computations and modeling were established
as a part of the architectural design process.

Machines, such as Control Data’s CDC 6600, provided sufficient computing power
to civil engineers and architects to build large-scale, lightweight and naturally

shaped structures, such as the membrane roof of the Munich Olympic Stadium.

Model building and experimentation as key elements of the design process where

augmented and even substituted by numerical computations and simulations.

The availability of substantial amounts of computing power for non-military pur-

poses at university laboratories opened the gates to designs using novel shapes

and materials.

However, simply transferring the physical model into a computer model wasn’t
sufficient. The Munich Olympic Stadium’s roof is also an example of new players
coming to the game, who contributed the knowledge from their fields to the
design process. The design of the roof required the deployment of methods from
geodesy to determine the optimal shape and inner structure of the construction.

Other theoretical advances in numerical mathematics and algorithms, such as
the Finite Elements Method (FEM), co-invented by John Argyris at Stuttgart Uni-
versity during the early 1960s, formed another pillar on which progress in struc-
tural design rested. Architects, engineers and mathematicians were members
of a heterogeneous group who were able to tackle such ambitious new projects.
The genesis and networking of this group is studied and illustrated.

After computers started to make their ways into science and engineering, there
was also a lively and controversial debate on the relations between experiment
and simulation in science, engineering and architecture. One central question
was - and is - whether and how numerical results reflect reality and how they
might be verified and validated. This study illustrates the developments in this
transitional period of the 1960s and early 1970s regarding this topic, too.

After powerful numerical simulation tools, i.e. computers, became available,
there were two groups discriminated by their attitude towards this new ap-
proach: Those who preferred the traditional model building and experiment over
computation and those who readily took up the new capabilities to implement
their dreams of novel architectural structures. This can be regarded as a kind
of “revolution” in architecture and civil engineering. Thomas S. Kuhn offered
a theory of “scientific revolutions” in predominantly theoretical fields such as
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physics. It is investigated how these developments can be regarded as reflecting
Kuhn'’s ideas of revolutionary changes and what (if any) philosophical lessons
can be learnt not only for this case study but also for the rise of computational
science.

The contribution is mainly based on materials never used before in a historic
study. A major part of the material is based on oral interviews with those who
participated in these developments. First-hand accounts are given on deploying
high performance computers to construct these large lightweight structures.

This study is part of the author’s PhD thesis project on the history of high per-
formance computing and the contributions of the Stuttgart and Karlsruhe areas
at the Department for the History of the Natural Sciences and Technology at the
University of Stuttgart.
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One of the most important developments in the history of the computer is its
near transformation from an instrument of computation in its early days into a
medium of communication today. Although this transformation, the outcome of
many independent and complex processes, is historically welldocumented, many
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of the more epistemological aspects of this transformation are still badly un-
derstood though they silently underlie defining structural aspects of our every-
day experiences with a computer [3]. As everyday experiences unroll in rather
small, human dimensions, the interlocking of those experiences with the com-
puter must, at least initially, be studied locally, proceeding in small steps and
with attention for detail [4]. Of course, such initial investigation can only be
suggestive of further research to get at details of this transformation of the com-
puter. In this case, I will look at a specific fragment of the history of computing,
the development of two different brands of parallel computing in the years 1964
-1975.

From an epistemological point of view, perhaps the most interesting chapters
in the history of parallel computing are those dealing with “non-trivial” task
parallelism. This means, neither the bit, operator or data parallelism that can
be built into an essentially still sequentially operating processor, nor the idea
of doing n times the same task (trivial parallelism). Instances of this kind of
“non-trivial” task parallelism have occurred throughout the history of comput-
ing. They can be found in some machines or systems for scientific computation
(such as ENIAC, ILLIAC IV, cluster or grid computing), or in computing systems
with asynchronous communications (such as time sharing systems, and later on,
networks of computers).

This talk wants to contrast parallel computing on the ILLIAC IV with the contem-
porary development of concurrent programming (both 1964-1975). Although in
both cases problems in parallel computing are tackled, they are embedded in
different technical settings. The ILLIAC IV was a computer system consisting of
a central unit controlling 64 parallel units especially designed for scientific com-
putation and simulation [2]. Concurrent programming was an answer to a set of
problems occurring in the design of operating systems for time sharing systems,
viz., how to house several users and their programs on one central computer
without conflicts [1]. As a consequence, parallel computing on the ILLIAC IV
deals mainly with the organisation and computation of numbers and proceeds
via synchronous computing cycles, while concurrent programming deals with
entities of a different kind altogether, such as programs, processes, users and
their asynchronous communications.

Given these different settings and foci of interest, it is obvious that both de-
veloped different sets of important problems and questions that would serve as
a kind of “test battery” for parallel computing. The relevant techniques and
concepts that ultimately evolved from these researches have to be seen against
these sets of problems. Said differently, the concepts and techniques developed
correlate directly with the kind of problems the computer systems will have to
deal with. In fact, looking at the sets of problems studied in both contexts, there
is but one problem that both approaches to parallel computing have in common,
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viz. the sieve of Eratosthenes. This problem will serve in our talk as paradig-
matic example.

Our interest in contrasting ILLIAC IV with concurrent computing, apart from the
historiographic value of how sets of problems, concepts and techniques correlate
with specific technological setting and research communities [5], lies in the fol-
lowing. Although the computer was originally conceived mainly as a calculator,
as a machine dealing with numbers, it now has become increasingly a machine
of communications.! In our analysis, we look at how one problem (parallel com-
puting) gets “read” in these two contexts of computing. Once as a problem of
computational organisation, once as a problem in the organisation of commu-
nications. Two salient points of this case-study analysis should be mentioned.
First, the role of time, in particular the difference synchronous/asynchronous,
is fundamentally different on the ILLIAC IV and in time-sharing. Second, the
need for differentiation of types and for a hierarchy of entities is common and
often necessary within a concurrent time-sharing system dealing with commu-
nications, whereas in the ILLIAC IV computing system, the leveling of data and
command types is more frequent.

The outcome of this analysis will permit us to return to the original question
of how our understanding of computing alters when shifting from computation
to communication, feeding the micro results back into broader questions. The
micro-structuring of parallel computing uncovered by the analysis of ILLIAC IV
and time-sharing allows to step up one level and to try to partially reconstruct
how and to what extent this micro-structuring may contribute to the shaping
of our macro-experience with the computer. By making sense of the so-called
petty details of computing, one can take the computer part in man-computer
interaction seriously and look at how the structures of human experience link up
with the patterns of specific computing organisations.
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Computation theory and information theory interact productively in computa-
tional practice and are treated as highly consilient theories in the philosophy of
computing. There are deep-rooted logical intersections between them, as Shan-
non has shown in 1938 and 1956, before and after his 1948 major paper. How-
ever, they are distinct historical entities and their differences, as well as their
affinities, are to be carefully identified. Unfortunately, both in scientific practice
and historical reconstructions, computational and information-theoretical analy-
ses have often been conflated into one undifferentiated object. Furthermore, the
role of Shannon’s theory has been overshadowed ([1]).

Since a few years, a number of philosophers are committed to bring information
theory back at the center of philosophical arena. They advocate a ‘semantic’
or ‘strongly semantic’ version of information theory that is much different from
Shannon'’s alethically neutral theory ([4]), and confirm the conflation of informa-
tion and computation ([3]).

I disagree with the semantic version of information theory and the conflation
practice even more so. I intend to show that Shannon’s information theory plays
a central and autonomous role in the development of a research area that is
of major interest, today: computational modeling. I will argue that information
theory has set the ground for computational models to encompass a statistical
apparatus as a fundamental instrument of their construction and updating. And
this does not have anything to do with the theory of computation. My argu-
ment is as follows: computational models are sophisticated tools, designed for
encoding scientific hypotheses in such a way as to make them reliably testable.
Mathematical statistics provides sophisticated procedures for testing hypothe-
ses. Shannon’s mathematical theory of communication is based precisely on a
computational relation between encoding procedures and mathematical statis-
tics. Indeed, Shannon’s primary claim is that a discrete source of information
—i.e. a set of encoded data - can be represented by a stochastic process, and
viceversa ([8, 40]). Thus, the theory of information grants us a sound epistemic
framework to deal with the fundamental components of a computational model.
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It “provides a unification of known results, and leads to natural generalizations
and the derivation of new results.” ([6, VII])

In order to explain in more detail the impact of Shannon’s concept of information
on computer models, I will now compare it to Fisher’s concept of information.
As a premise, I will examine briefly the concept of ‘type’.

Let us consider — apart from other important characters — a computational model
as “a mathematical model constructed from data types using operations and re-
lations that are computable relative to those types” ([10]). On the one hand, com-
putational data types are sets of instructions (‘type constructors’) for a logical
variable to occur in a programming language. On the other hand, information-
theoretical ‘types’ are “sequences that have the same empirical [probability] dis-
tribution” ([2, 347]). These definitions are not mutually homogeneous and sug-
gest no straightforward convergency, at an operational level. The computational
type is supposed to put constraints on the information-theoretic type, while the
latter should provide measurements to be applied in reverse to the former. These
measurements must have been previously derived from an estimation of exper-
imental data, then corrected and re-fitted into the computational structure (the
data types) of the model ([7]). Winsberg ([11]) describes such a fitting process as
a sequence of “back-and-forth, trial-and-error piecemal adjustments” of statisti-
cal parameters. A not forthright process, as I said. The focal point of statistical
evaluation is Fisher’s Information Concept, defined as the measure of adequacy,
or the estimation of the variance, of a statistical parameter. This is an illuminat-
ing notion, much helpful in understanding the mathematical basis for statistical
investigations to be reliable. But Fisher was dealing only with numerical issues.
His concept of information was limited to error control and could not admit type
recoding operations as a consequence of statistical divergences. Quite to the
contrary, Shannon’s information can do this. So, if we carry out a careful anal-
ysis of Shannon’s notion of entropy and compare it to Fisher’s information, we
have to conclude that entropy is a much more powerful concept than parameters
estimation. I submit that information theory provides a more penetrating control
on hypotheses and models than statistical validation, because it extends our abil-
ity to update models beyond the level of numerical computation, up to the level
of encoding schemata constituting the logical structure of a model. Information
theory can manipulate encoding procedures precisely via statistical analyses.

Thus, the coding process can be properly divided into two packages, “the coder
and the model. The model, or statistical processor, passes information about the
statistical nature of the source text to the coder, which uses then this information
to encode the source text efficiently.” ([5, 181])

As a conclusion, I will consider an example from metereology, a typical object
of computational models ([9]). I will show that ‘post-statistical’ computational
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processing of ‘parameterization schemes’ is performed using the resources of
information theory.
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I intend to illustrate the meaning of minimal programs for tractable problems.
The concept of minimal program is the crucial concept in the Kolmogorov algo-
rithmic theory of complexity. Algorithmic information theory (Kolmogorov Com-
plexity), applied in computability theory, has been conceived to tackle with the
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lower bounds of tractability’s problems. Roughly speaking, the gist of the argu-
ment is as follows. If you cannot write a minimal program that is significantly
shorter than a given set of data you want to reproduce, such set lies, in a sense,
beyond the (lower) threshold of tractable complexity. In other words, the analy-
sis almost always revolves around the question: what happens if (and what does
it mean that) a bit-string, representing the values of the function to be computed,
is not compressible?

In this paper I propose to consider the complementary question: what happens
if you can compress a string representing a problem, i. e. if you can write a
minimal program significantly shorter than the set to be reproduced? At a first
glance, the answer is quite obvious: the problem is tractable. But this true and
obvious answer may be the starting point of some consideration.

In a perspective inspired by Shannon Information Theory, shortening, in compu-
tation, means capturing regularities, eliminating noise and redundancy, identify-
ing relevant parameters for determining the output of the computation.

A program p shorter than another program g reduces the entropy involved in the
computation: shortening means reducing information needed to compute the
output. This point can be expressed mathematically by defining a “gain func-
tion”, depending on the entropy of a program. Essentially, the gain function can
be defined as the difference between the entropy of the problem and the entropy
of a program resolving that problem. So defined, the gain function explicates
the strong tie between the length of a program and the optimization of the com-
putation: minimal programs maximize the gain function.

After having introduced the gain function in general, I'll proceed with some illus-
trative example of application, taken from those areas of Artificial Intelligence,
such as machine learning, where shortening as optimization is of crucial rele-
vance, not only for computational reasons, but also for more general theoretical
reasons (especially when the aim is to model human capabilities).
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The purpose of this paper is to examine whether it is possible to refine the cri-
teria traditionally used to analyze effective computability so as to obtain a math-
ematical characterization of the class of computational models adequate for the
development of complexity theory. In the broad sense, a model of computation 9t
may simply be taken to to be a pair consisting of a class of mathematical struc-
tures M (which, following tradition, I will refer to as machines) and a definition
Appon which specifies what it means to apply a machine M € 9t to an input of
the appropriate sort. If the machines of 91 are understood as computing (possi-
bly partial) functions of type X — Y, the result of applying M € Mtox € X -
symbolically Appon(M,z) - will be an element y € Y.

What appears to ground our willingness to regard a given structure 9t = (M, Appsy)
as a model of computation is that it is possible to construct M € M which we are
willing to accept as procedural models of at least certain informally specified
algorithms (e.g. Euclid’s algorithm or long division) - i.e. mathematical rep-
resentations which represent the mode of operation of such procedures relative
relative to the definition of Appsn. Most readers will be familiar with the range of
formalisms which are traditionally classified in this way - e.g. variants of the Tur-
ing machine model, lambda calculi, systems of recursive equations, grammatical
production systems, and variants of the Cook-Rechkow RAM model. Matters of
family resemblance aside, however, standard references (e.g. [8]) do not present
these models as instances of a more general mathematical definition. It is thus
reasonable to ask whether it is possible to identify the features in virtue of which
we judge them to fall under the heuristic characterization of a model of compu-
tation.

If this question is approached from the standpoint of computability theory, it is
possible to replace it with a more familiar one: what mathematical conditions
must be imposed on 91 in order to ensure that the class of functions Fo;m =
{AZ. Appon (M, &) | M € M} coincides (possibly under an effective encoding of X
and Y into N) with the class of partial recursive functions PartRec? Since for
most familiar models 90, it is easy to see that PartRec C Fon, this question may
be answered by specifying conditions sufficient to ensure that AZ.Appon (M, T)
is partial recursive for all M € M. In the case where 9 is an iterative model
of computation - i.e. such that the M € M have the form (St, o) where St is a
class of computational state and o is a transition function of type St — St and
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Appon is defined in terms of the iteration of o - this question has been examined
in detailed. In particular, Gandy [3], Sieg [9] and Dershowitz and Gurevich [2]
have all argue that conditions of following form ought to be sufficient to ensure
the inclusion Fon C PartRec:

(Bo) Boundedness: The value of o(s) must depend only on a bounded region
surrounding the current loci of computation (of which there may only be
finitely many).

(Lo) Locality: For all s € St, if o(s) = s', then s’ can only differ from s in a finite
region surrounding the computational loci.

Familiar models like the single tape Turing machine satisfy these properties
relative to the natural interpretations of “computational loci” (i.e. head posi-
tion), “region” (i.e. scanned tape cell), and “depend” (i.e. determination of the
value of the transition function 0 by the current state ¢ € Q and the currently
scanned symbol). However, making sense of (Bo) and (Lo) with respect to an
arbitrary model of computation 9 appears to require that we find analogous
spatio-temporal and causal interpretations of the features of its machines.

It is generally straightforward to find such interpretations of the models men-
tioned above and thereby show precisely that they satisfy Gandy’s set theoretic
analyses of (Bo) and (Lo). However, it is also possible to show that these con-
ditions are satisfied by models which are not generally considered admissible
for the development of complexity theory. In this context, we must define for
each model 9 definitions of time and space complexity timeas(x) and spacens ()
which are respectively intended to analyze the number of basic computational
steps performed and the number of storage or memory locations accessed by
M € M during its operation on input . The term reasonable (cf., e.g., [8]) is con-
ventionally adopted in this context to describe models for which these measures
are in at least rough accord with the practical exigencies we face in everyday
computation. If M contains a machine M which efficiently solves a mathemati-
cal problem which is known (or expected) to be genuinely infeasible in practice
(i.e. to lack an efficient algorithm) — then M will typically not be regarded as rea-
sonable. For instance, although many familiar models like the single- and multi-
tape Turing machine and sequential RAM model with unit time addition and sub-
traction are regarded as reasonable, both the Parallel RAM (PRAM) model and
sequential variant allowing for unit time multiplication (MBRAM) are regarded
generally as unreasonable. For instance, both can be shown to contain machines
M which solve NP-complete problems (e.g. SAT or the Traveling Salesman Prob-
lem) in with running time timens(x) polynomially related to |z|.

Since it is also widely accepted that polynomial time decidability is an extension-
ally adequate analysis of feasible decidability, the existence of such machines has
traditionally been taken to demonstrate that PRAM and MBRAM are not models
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relative to which feasibility can be accurately measured. However, neither model
allows for the computation of functions outside PartRec and both may be shown
to satisfy Gandy’s formalization of (Bo) and (Lo).! Since this analysis is explicitly
aimed at encompassing effective models of parallel computation, this result is
hardly surprising. However, it does point to a natural refinement of the question
posed above - i.e. is it possible to formulate mathematical conditions which pick
out the class of models which are regarded as reasonable in practice?

The traditional approach of complexity theory has been to attack this problem
extrinsically — e.g. by first observing that the complexity of a problem relative to
the Turing machine model provides an accurate gauge of its practical computa-
tional difficulty and then proposing that the class of reasonable models should
be equated with those whose members may be efficiently simulated by Turing
machines. But it is also possible to ask whether the class of reasonable mod-
els can be characterized in a more intrinsic way.? I will address this question in
the following way: 1) I will first attempt to provide a general characterization
of what is meant by an admissible definition of time or space complexity for an
arbitrary model of computation 9t; 2) on the basis of this characterization, I will
propose a means of refining Gandy’s original formulations of (By) and (L) by
proposing that the operations in terms of which a reasonable model is given must
be definable in a weak set theory (e.g. a subsystem of ZF — Inf as studied in [5]).
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Science presents us with multiple accounts of similar phenomena. As such the
problem of theory choice is a central problem in philosophy of science. Usually
accounts of theory choice take the form of a simple utility calculus which is then
maximized. The challenge is then to find the right utility function, viz. that
function which weighs epistemic values against each other. The assumption of
the existence of such a utility function is equivalent to assuming the existence
of a Scientific Method. Since the demise of logical empiricism, the notion of a
unique scientific method has lost its appeal. However, it remains unclear how
theory choice can be rational without a shared utility function which ultimately
allows to rationally compare alternatives. For example Thomas Kuhn denied the
existence of such a common utility function! (every such utility function is at
least partially relative to a paradigm) but he was at a loss how in such a situation
scientific rationality can be saved.

“Even those who have followed me this far will want to know how a
value-based enterprise of the sort I have described can develop as
a science does, repeatedly producing powerful new techniques for
prediction and control. To that question, unfortunately, I have no
answer at all [...] The lacuna is one I feel acutely” ([2, 332-33])

1Kuhn [1, 94]: “the choice [between paradigms] is not and cannot be determined merely
by the evaluative procedures characteristic of normal science, for these depend in part
upon a particular paradigm, and that paradigm is at issue”.
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The formulation of the problem of theory choice in philosophy of science has
long been committed to the assumption of a Scientific Method because it was
thought that abandoning this assumption would lead straight to irrationality. In-
deed many of the harshest criticism on Kuhn was aimed exactly at this point
([1, 198-99]). Now that better formalism and understanding is being attained
on the dynamics of complex adaptive systems which typically have multiple, not
necesarily optimal equilibria, this turns out to be a non sequitur. It is indeed
possible to behave rationally in a situation with no general utility function. This
only follows if rationality is equated with the existence of a unique, optimal so-
lution. Indeed, probably most problems humans are faced with are exactly of
this nature. Scientists and philosophers alike should not limit their domain to
those aspects of the world which fit their preferred model of (unique and opti-
mal) rationality, but should rather find out how they can expand their domain of
application to model more complex and realistic situations.

The aim of my paper is to demonstrate that computer simulation allows to ratio-
nally deal with the problem of theory choice in the absence of a scientific method.
My account will consist of a notion of scientific rationality based on Herbert Si-
mon’s notion of ‘satisficing.? I will then describe the problem of theory choice
under multiple scientific methods in analogy to the multi-armed bandit problem.>
A multi-armed bandit problem consists of a series of jackpots each with different,
previously unknown payoffs. An agent needs to make a rational decision about
what lever to pull. The characteristics of this problem show remarkable simi-
larity to the problem of theory choice, most importantly the need for a rational
choice in the absence of a shared utility function. As a consequence this problem
does not have an analytical solution, but still it is possible to develop satisficing
strategies (cf. Herbert Simon) which guarantee a satisfactory outcome every
time the game is played. To develop this analogy and to explore different strate-
gies, simulation is an essential tool. This framework will allow me to draw a
number of epistemological consequences. This will
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In the first part of the paper we note the similarities between Turing’s concep-
tion of symbols in § 9 of his 1936 paper and Hilbert’s conception of signs in the
early 1920’s. We then argue that an affinity between the respective appeals to
signs and symbols is instrumental to appreciating the nature of an important
contrast between them, to which we devote in the second part of the paper.
Turing’s interest in the nature of symbols is focused on their suitability for a
particular characterization problem (or cluster of such problems). To be sure,
Turing is characterizing an intuitively familiar domain of mathematical objects
and not a domain of the truths of a theory, so the question of establishing accept-
ability, engaging Hilbert, is moot. But this might obscure the fact that Hilbert
too is engaged in a characterization problem for which the symbol structure of
sign strings is exploited. (Interestingly, this can be obfuscated by failure to no-
tice distinguishable types of view about Hilbert’s formalism: its metaphysical
association with contemporary nominalism as opposed to an emphasis on sym-
bol structures’ appropriateness for solving certain characterization problems.)
Hilbert aims to capture the truths of a rich theory like ZF as the theorem of its
axioms by showing that the characterization of the class of truths of the theory -
as well as the theory’s acceptability - depend on simple combinatorial properties
of the theory considered as a symbolic system. The role of signs in showing the
acceptability of the theory is distinguishable from their role in Hilbert’s goal of
capturing the class of the truths of the theory, which is, of course, equally a part
of Hilbert’s formalism, and appears to be as much a characterization problem as
Turing’s.
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In Part II it is shown that Turing’s formal treatment of symbols (as part of his
formally defined computing machines) involves an important divergence from
Hilbert: Drawing on the distinction between quasi-concrete and pure abstract
objects as found in the work of Charles Parsons we articulate the shift from
the notion of symbol in §9 of the paper. The symbols described in §9 are, like
Hilbert’s signs, are what Parsons calls quasi concrete, but the notion of symbol
in Turing’s formal model described in the mathematical sections of the paper
no longer assumes their quasi concreteness. The point is both historical and
conceptual. We offer indirect arguments for this central claim (from the math-
ematical abstractness of the machines), and go on to argue for it directly. This
aspect of Turing’s work consists in yet another significant (and hitherto not suf-
ficiently acknowledged) novelty of his 1936 paper.

We distinguish this aspect of Turing’s work from claims implicit in Sieg’s analy-
sis and from consequences of the well-known observation that Turing Machines
can be axiomatically characterized. In Sieg’s account the status of symbols or its
development is not raised. But we find supporting considerations in Sieg’s sys-
tematic work (especially [7, 8, 9]). We consider the relation between our analysis
and Sieg’s account.

Our analysis invites the conjecture that the novelty of Turing’s view might be fur-
ther clarified if it is shown to permit a theory of strings that does for the symbol
structures something comparable to the axiomatic characterization of Turing
Machines, indeed that on Turing’s view the theory of strings itself can be ax-
iomatically characterized. Deploying Parsons’ apparatus we introduce the ques-
tion of the logical relation between the non-quasi concreteness of symbols, their
pure abstractness, and the idea of the axiomatization of the theory of strings
itself.

We conclude with possible objections to which Turing is vulnerable even by the
weaker commitment to the symbols’ non-quasi concreteness, and pose two ques-
tions for further research: can Turing be criticized for the departure from the
quasi-concreteness of symbols, and if so, how generally the force of the criticism
might extend beyond the constrict of a Hilbertian point of view.
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A long history of automation: from its origins to the computer
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The talk begins by proposing an operational and generalisable definition of the
concept of automaton and describes the two principles that allow automation
to function, namely, regulation and programming. These two principles are not
incompatible: they both function, for example, in a mechanical clock or in a
computer.
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It is made clear that the programming takes place, on the one hand, by determin-
ing in advance the sequence of operations (or actions) that have to be effected
by a machine and, on the other, the recording of this sequence on a material
support that serves as a memory. The opportunity is taken to explicitly make an
enlightening distinction between the program such as it is conceived by man and
the program such as it is understood by the machine. Then, a new detailed classi-
fication of programs (such as they are understood by the machine) is suggested.
According to this typology, a program is said to be interior (to the machine) if
it is fixed. But this description is inadequate: it is indispensable to say whether
the program is ‘distributed’ (that is, there is no centralizing of the sequencing)
or whether it is ‘centralized’ (in the opposite case). A program is said to be ex-
terior (to the machine) if it is modifiable (this implying a centralization of the
sequencing) manually. Finally, a program is said to be recorded in the (central)
memory, in the last possible case. One final fundamental detail: a machine can
have several levels of programming. Mention will also be made of the underlying
technologies of automation (mechanical, electromechanical and electronic) and
their evolution over time.

While systematically applying this programming typology and detecting the cases
of regulation, I will review the technical developments of mechanical tools hav-
ing recourse to an automation that was employed until the beginning of the 19"
century in different domains : the measuring of time and the parts of clocks,
music (programmed organs), entertainment and teaching, weaving.

Famous calculating machines are subsequently analyzed and compared by ap-
plying the typology defined above. The Pascaline, a mechanical adding machine
constructed by Blaise Pascal, can in fact be defined by its interior distributed pro-
gram which allows the carry mechanism to be automated (thanks to a series of
control levers each situated between two gears). As for the machines envisaged
by Charles Babbage, they have several programming levels. The Difference En-
gine partly constructed in Babbage’s time has two: it incorporates, in addition to
the distributed interior program (analogous to that of the Pascaline but better), a
centralized interior program (concretized by an irremovable gear) dictating the
execution of a certain sequence of additions which is always the same. And as
it was subsequently envisaged by Babbage, the Analytical Engine has three pro-
gramming levels. This machine testifies, it is true, to a revolutionary ambition
and ingenuity: it is a question of automating the execution of any sequence of
operations by basing it on an exterior program (in the form of punched cards),
itself implemented by an interior centralized program, a kind of ‘microprogram’
(concretized by a cylinder with studs) which will, in turn, direct the sequencing
of the carriage mechanism realized by an interior distributed program (bringing
into play sophisticated levers situated between the gears piled up to form cylin-
ders). Moreover, the Analytical Engine had to be capable of making a decision
on the basis of a result that it had obtained, in other words: its exterior program
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had to allow ‘conditional branching’, or in yet other words: the machine had to
be ‘regulated’.

In the form of a partial synthesis, I will then, in diagrammatic form, propose a
new attempt at the ‘phylogenesis’ of the programming of mechanical tools from
the 12" to the 19'" century in Europe, covering the different domains that were
tackled until then. Reference will be made to the mechanographic (electrome-
chanical) machines of the end of the 19'" century, to show that they are not au-
tomata. Mention will subsequently be made of large calculating machines (elec-
tromechanical and electronic) of the 1940s, their programs being either interior
or exterior (via strips of perforated paper or panels of electrical connections, for
example).

I shall finish by focusing on the computer. It will be seen that the underlying
technology is necessarily electronic, to comply with temporal requirements. The
fundamental features of the computer will be defined, it being emphasized that
they are identical to those of the Analytical Engine with one exception: the high-
est level program is here recorded in the central memory (instead of remaining
on the outside), which implies the understanding by the automaton of a ‘machine
language’. The path that has led to this new option will be explained and one
immediate consequence highlighted: henceforth the machine will be capable of
itself modifying its own program.

The extent of this consequence was not immediately perceived at the time. How-
ever, it turned out to be decisive: henceforth a programmed automaton could
help man not only to calculate but also to write its programs! It was now indeed
possible to invent and use high level languages (that is to say, near to natu-
ral language or mathematical language) without knowing the specific material
characteristics of the computer employed to produce a program which would in
turn be provided as a given to another program, called a compiler. And this com-
piler would as a result produce a program in machine language. The concept of
‘software’ emerged and was clearly distinguishable from that of “hardware’.

Language for algorithms, or algorithmic language?

Helena Durnova
Masaryk University, Brno, the Czech Republic
helena.durnova@mail.muni.cz

Can an algorithm formulated in a clumsy way and without the use of a higher
level programming language be as efficient as those formulated in one? Such is
the case of the minimum spanning tree algorithm formulated in 1926: this solu-
tion, dubbed obscure three decades later, proved to be one of the most efficient
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approaches to the minimum spanning tree problem [9]. Moreover, its author did
not even call it an algorithm, but simply a solution. Such solutions, nowadays
usually called algorithms, appeared and continue to appear outside the context
of computers and programming languages, with the famous Euclidean algorithm
hardly being the oldest. The term itself derives from the name of the Arabian
learned man al-Khwarizmi, but its specific and widely spread-out usage to de-
note certain approach is rather recent: algorithms devised for problems in dis-
crete mathematics as late as mid-1950s were called procedures, constructions,
or simply solutions to a problem. As a specific way of solving problems, algo-
rithms have attracted the attention of philosophers who ask about the limits of
such approach [7].

The term algorithm, synonymous with reckoning since the 12" century, was
given a new meaning by Leibniz. For Leibniz, algorithm denoted above all
the straightforward rules used in algebra. Together with such strict mechani-
cal rules, Leibniz’s universal characters would allow mechanization of reasoning
[6]. The search for accurate ways of expressing algorithms as well as of ade-
quate ways for talking about their qualities can still be found in papers devoted
to algorithmic solutions to problems, e. g. in discrete optimization, in the mid-
1950s. Both the formulation and the verbal evaluation of the algorithm were
inherent to the mathematical environment and related to the justification of the
solution as a new mathematical result. Although judging the quality of mathe-
matical results is not formalized, the originality of the discovery as well as its
simplicity and elegance of the discovery are among the evaluation criteria [1].
Indeed, the authors themselves justified their result by having arrived to a more
comprehensible, faster, or simply better solution [3].

Formal analysis of algorithms, in terms of their consumption of time and space
started in the mid-1960s [8] with carefully phrased notes, which were called, for
example, a philosophical digression [4]. While considering whether ‘efficient’ or
‘good’ is a better word to be used for evaluating algorithms, Jack Edmonds also
makes a clear distinction between a conceptual description of an algorithm on
the one hand and a particular formalized algorithm on the other.

Older and newer algorithmic solutions can only be compared through under-
standing the language in which these solutions were written. Matthias Dorries
[2] and Ladislav Kvasz [5] have shown the crucial role of language in commu-
nicating respectively, science in general and mathematics in particular. With
computers, the issue of language comes to the fore not only on the level of feasi-
bility of machine translation, but also on an almost intrinsic level: in the 1950s,
many people in computing (e.g. John von Neumann and Heinz Rutishauser)
thought that trained mathematicians should have no problem when translating
their problems into a language understandable by computers. However, as trans-
lating of the language of mathematics into machine language was found to be
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extremely laborious, this task was left to the compilers for various programming
languages.

Of the new programming languages, one, namely ALGOL 60, was chosen by
the Association for Computing Machinery as the publication language of the al-
gorithms section of the Communications of ACM. The example was followed in
the mid-1960s by the algorithms section of the Czechoslovak journal Aplikace
matematiky. The algorithmic language, abbreviated as ALGOL, thus became a
major language for exchanging algorithms in an easily comparable way by for-
malizing expressions for loops and branches in the notation of algorithms.

Translating algorithms formulated prior to the widespread use of programming
languages need not be a direct process, as the older, non-standardised, formula-
tions might be only conceptual descriptions of the algorithm rather than descrip-
tions leading to mechanical execution of the procedure. Colloquial language for-
mulations also usually did not call for the analysis of the algorithm in terms of
time and space consumption. What was valued more was the insight and the ele-
gance of the solution. The paper will attempt to show what kind of mathematical
culture stimulated the formulation of exact algorithms while their authors could
not even think of trying the algorithms out on a computer.
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Computer Science, more than any other discipline of inquiry, has been driven
by technological development, implementation trade-offs, and market forces. As
a result, the philosophical study of Computer Science has been molded by the
dominance of hardware development. It is our hypothesis, developed in this pa-
per, that the early adoption of the stored-program computer, the “fetch-execute-
store” paradigm of computing, and the central processing unit as the dominant
architecture has driven the study of foundational issues to such an extent that
we tend to focus on a serial-centric philosophic view of computing in ways that
can hinder alternative views of computability and information theory.

In the study of Hilbert’s Entscheidungproblem and the concept of effectively
computable, three dominant models emerged: the lambda-calculus of Church;
Recursive Functions as developed by Kleene and Rosser; the Turing Machine
as developed by Turing (with a similar, particularly Orwellian equivalent con-
cept developed by Post). In addition, and somewhat later, Post and Thue devel-
oped the concept of term-rewriting systems (or “phrase-structured grammars”).
That each of these competing models were found to be equivalent led to the
formulation of the Church-Turing Thesis that these models captured the notion
of effective computability, and that anything (effectively) computable was com-
putable by a Turing Machine. While equivalent in expressability, each model
approached the notion of “computable” in distinct ways that influenced the de-
velopment of philosophical questions on computability. Nevertheless, the Turing
Machine model has become preeminent. The mathematical simplicity of the Tur-
ing Model certainly played a role in this, but the attraction the Turing Machine
can be partly attributed to the fact that it is the one model that specifically al-
ludes to the mechanistic nature of the Hilbert’s idea of “effective,” and computer
science is all about “computing machines.”

In parallel to the development of the philosophical idea of effective computabil-
ity was the physical realization of computing engines. The architecture of these
machines were not directly influenced by the Turing Machine model, but in deal-
ing with electro-physical realities, they did result in the same serialization of
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computing processes that was the hallmark of the Turing’s development of ef-
fective computability. For a multitude of reasons the “stored program machine”
that uses a central processing unit and a single, separate memory to store pro-
grams and data - what has been coined the “von Neumann architecture” - be-
came the principle architectural model of all successive machines. The inherent
serial nature of Turing Machines and physically realized computing machines
became the driving force in the development of computer science. The ensuing
decades brought about a flurry of alternative machine architectures to challenge
the emerging dominance of the von Neumann architecture and deal with what
quickly became known as the “von Neumann bottleneck.” Ultimately, the mar-
ket juggernaut of IBM, Control Data, Univac, Digital Equipment predominated,
research moved away from alternative views of computing, settled on the von
Neumann architecture as a given, and the serialization of computation - the
fetch (from memory)-compute(on the processor)-store (into memory) — became a
fait accompli.

The serialization of computing, and the very mechanistic nature of it, became the
de facto standard (perhaps subconsciously) that influenced much of the founda-
tional work in computer science. The confluence of theory and practice worked
to strengthen the view that this was the correct way to view computation. Alter-
native formulations of computable models, alternative formulations of Church-
Turing, always return to the fact that they can “efficiently simulate any realistic
model of computation,” and so in essence, why bother to think in terms outside
the constraints laid out by the “von-Neumann machine?” We present two such
consequences of how this thought-process has impacted the study of computable
phenomena - one theoretical in nature, one much more practical:

The Complexity of Problems vs. Problems of Complexity. The study of
algorithms (processes) and the complexity classes that characterize them
has been developed exclusively on the Turing Machine model of compu-
tation. [The very elegant work by Ron Fagin on Finite-Spectra being an
exception.] Alternative models such as the Random-Access-Machine that
more closely resembled the physical realities of modern computing were
developed, and a variant of the Church-Turing Thesis, the Invariant The-
sis, emerged that ‘reasonable’ machines can simulate each other within a
polynomial-bounded overhead in time and a constant factor overhead in
space.” Since the time complexity classes of interest are all closed under
polynomial composition, the Turing model has become the de facto model
for categorization of a problems complexity. Yet, it can be shown that prob-
lems of intrinsic complexity (developed on Turing machine models) cannot
be adequately captured by the very same complexity classes developed for
these models [1]. These results would seem to indicate that alternative
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models of capturing complexity are needed. (It should be noted here that
the finite-spectra models also fail to capture this complexity.)

Processes vs. Processors: The phenomena of over-control of phys-
ical processes. Rolf Pfeifer has investigated how in robotics, artificial
intelligence and neuroscience there has been a focus on the study of the
control of the neural system itself, and on symbolic or connectionist rep-
resentations. He has demonstrated that complex processes in nature can-
not be the result of a central processor/control concept - the von Neu-
mann/serialization concept of computing and that surprisingly complex be-
haviors can be achieved with little control and representation [2]. To bet-
ter understand and mimic even simple (seemingly intelligent) processes
we must break away from the linkage of process and a central proces-
sor/memory control of these processes.
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In my talk I deal with Turing’s original work on real number computability.

The relevance of Alan Turing’s contribute to the rigorous treatment of the in-
tuitive notion of ‘effective calculability’ is well-known. Nevertheless, the funda-
mental results obtained by him concerning the computable functions of an inte-
ger variable have obscured his important achievements in computability theory
for real numbers and real functions. In particular, this is the case with his famous
paper ‘On computable numbers with an application to the ‘Entscheidungsprob-
lem”’ [4], where the notions of a computable real number and of a computable
real function play a crucial role. This is clear from the title itself: since all nat-
ural (and rational) numbers are trivially computable, it is manifest that Turing’s
interest pertained to real numbers in a peculiar way. The characterization of the
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computable real numbers within the indistinct background of the generic real
numbers was in fact a primary motivation for the introduction of the machines
named after him as ‘Turing machines’. These machines were in fact originally
conceived to calculate the infinitely long binary expansions of the computable
real numbers.

In the same paper, Turing introduced an early definition of a computable real
function and provided some important preliminary results on the corresponding
theory.

The year after, Turing published a short note, ‘On computable numbers with
an application to the ‘Entscheidungsproblem’. A correction’ [5], in which he
changed the representation of real numbers. In fact, after the elaboration of
[4], he realized soon that the decimal expansion representation is not suitable
for computability theory, and hence he suggested a new representation inspired
by Brouwer’s treatment of real numbers via ‘overlapping intervals’. In doing
so, Turing gave an example of what, in contemporary computable analysis, is
now called an ‘admissible representation’. This very short but deep addition
to [4] contains important ideas which anticipate some insights achieved by the
modern theory of representations as developed by Klaus Weihrauch almost 50
years later. In spite of its importance, this note has been underestimated for a
long time, probably because it could not be adequately appreciated before the
systematic foundation of computable analysis was completed. [4, 5] provide then
a foundation for the so called ‘“Type-2 Theory of Effectivity’ (TTE), an approach
to computable analysis based on the use of Turing machines to transform digital
sequences of infinite lengths seen as encodings of mathematical objects in metric
and topological spaces [7].

Some years later, in 1948, Turing wrote a paper on the solution of linear equa-
tion systems [6] in which he followed a remarkably different approach to real
number computability. This paper has been seen as providing justification for
the ‘realRAM machine’ model [1, 3], which, in contrast to TTE, deals with real
numbers as atomic objects [2]. In particular, [6] contains two fundamental no-
tions maintained in this paradigm. The first one is the evaluation of computation
complexity as the number of discrete steps performed during the execution of
algorithms. The second one is the notion of a ‘condition number’, which is used
to estimate the impact of round-off errors arising in computations performed by
electronic devices where real numbers are in fact substituted by their rational
approximations.

This ‘double-face’ approach to real number computability corresponds to a fun-
damental dichotomy still present in mathematics: the development of theoretical
computer science and numerical analysis as two radically separated subjects.

In my talk I show how both TTE and the realRAM machine model have actually
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their foundations in Turing’s work, and, viceversa, how the technical tools devel-
oped by these two incompatible paradigms allow a systematic interpretation of
Turing’s pioneering results in the subject.
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The history of computing can be divided in two main periods: the ancient era
and the modern era. Since ancient times, humankind succeeded to build meth-
ods and tools in order to help in calculation; in particular, in various parts of the
world, in completely independent ways, different civilizations such as Roman
and Chinese invented the abacus, which was still used by the Russian in 1957
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for the necessary calculations to put Sputnik in space [8, 147]. But the tool, i.e.,
the abacus, was not enough: various methods of representing numbers from 1
until 9,999 with the only help of the fingers were necessary to exploit the pos-
sibilities of the abacus, as reported by Leonardo Fibonacci da Pisa in his Liber
Abaci (1202-1228)—'fingers’ in Latin is digita, from which our use of ‘digit’ to
indicate numerals derives [1].

Calculating machines were considered auxiliary tools for computation in the sim-
ple, non-abstract, sense—i.e., the user puts numbers in to have numbers out, and
their meaning is in the eyes of the user himself—even when modern science and
mathematics in parallel grew: Schickard’s calculating clock (1623), as well as
Pascal’s Pascaline (1642) as well as Leibniz’s Step Reckoner (1671-1673) are
some notable examples. Their aim was to hide the calculation process to their
users, as the idea of calculation as a tedious, low operation of the mind, good for
slaves, not for men, as Napier first wrote in 1614 in publishing for the first time
logarithms [9, 161] and Leibniz reprised at the end of the century [11, 22]. This
divorce between intelligence and calculation, as put by [3], was also the philo-
sophical basis of Babbage’s Analytical Engine—his dream was the mechanical
calculation and printing of all tables of ephemerides [2].

The modern era of computing was born in 1936, when Church, Post and Turing
put the foundations of general-purpose machines, while in 1941 Zuse built the
first Turing-complete machine in the world [12]. Unlike ancient times, modern
computers were conceived to manipulate symbols in form of numbers: as Newell
effectively recalled, “I've never used a computer to do any numerical processing
in my life” [11, 129]. It is worth noticing that [14] still wrote explicitely ‘com-
puting machinery’ to refer to machines, not human beings, when he proposed
his famous test for Artificial Intelligence—term introduced at MIT by McCarthy
in 1959 [10]. The idea behind modern computers is completely different from
ancient times: calculation can represent—in digital form—intelligent behaviour
or even mind per se. In other words, there is an epistemological level of abstrac-
tion in considering numbers as symbols, i.e., something that stands for some-
thing aliquid stat pro aliquo. In other words, the symbolization of numbers put
in mechanical computation—which eventually constitutes software—is a collec-
tion of levels of abstraction (LoA), as “0’s and 1’s as such have no causal powers
at all because they do not even exist except in the eyes of the beholder” [13,
30]. In fact, ontological forms of levellism—i.e., where LoA effectively exist, not
only in the eyes of the observer—are hardly tenable if we analyse the generation
of information after the Fourth Revolution [6, 37], especially if we do adopt a
philosophical monism, i.e., that syntax is not intrinsic to physics [13].
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From the advent of general-purpose, Turing-complete machines, the relation be-
tween operators, programmers and users with computers, i.e., human-computer
systems, or rather interconnected informational organisms or inforgs, in Floridi’'s
terms, can be seen in terms of levels of abstraction (LoA), and henceforth anal-
ysed with the method of levels of abstraction [7, 5].

In this paper an analysis of LoA throughout history of modern computing is pro-
posed, in order to find the minimal number of LoA needed to explain the episte-
mology of inforgs—from early modern general-purpose operators of computing
machineries until the final users of so-called ‘cloud computing’.

This epistemological levellism uses Category Theory as the methodological refer-
ence, treating information as functions, i.e., a domain intensionally mapped into
a codomain where the inner structure is preserved, instead of Cartesian prod-
ucts. The key idea which is developed in the paper is that the level A abstracts
over the level B when it is possible to find a map from A to B which preserves the
structure of A. We claim that the notion of ‘structure’ is suitably coded by cate-
gories, in the mathematical sense, while the notion of ‘map preserving structure’
corresponds to the notion of functor. Finally, a comparison with the method of
LoA by [5] is proposed, in order to find a categorial treatment of interconnected
informational organisms.
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The stack has a special place in the emergence of theoretical computer sci-
ence, as argued by Michael Mahoney, the pioneer of the history of the theory
of computing: “Between 1955 and 1970, a new agenda formed around the the-
ory of automata and formal languages, which increasingly came to be viewed as
foundational for the field as a whole” [9]. Interest arose in “devices with more
generative power than finite automata, and more special structure than Turing
machines” [3] The push-down automaton is such a device.

1. What is a stack? The definition and function of a stack is shortly described.
Also the adaption of the word stack is discussed. In the OED, there are many
stacks, characterized by words like pile or heap but without prescriptions of how
items are added or deleted. Stack was chosen by E.W. Dijkstra — before that
pushdown store, LIFO list and cellar storage were used.
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2. A reverse history. We define the push-down automaton and its relation to
languages, citing “... the theory of push-down automata is, in fact, essentially
another version of the theory of context-free grammar” [4]. The PDA was intro-
duced by Newell in 1959 [11].

The PDA is more capable than a finite automaton, but weaker than a TM. How-
ever, an automaton with two stacks can simulate a TM. To complicate there is
also the stack automaton which is more capable than a PDA but does not reach
the level of a TM.

The property of the PDA to accept context-free languages made it useful in the
theory and practice of programming languages. Natural language processing in
human speakers and listeners also involves parsing, which led Victor H. Yngve to
propose that a speaker’s short-term memory could be modelled by a stack with
limited depth but this was convincingly rejected by Miller and Chomsky [10].

The computer science stack was introduced by E.W. Dijkstra [5]. Dijkstra was a
pioneer of compiler construction with the first Algol 60 compiler. Writing about
its history, Dijkstra describes his contribution [6]:

During my 1959 summer holiday in Paterswolde I had given my first
thoughts to the question how to implement recursion: in the early
months of 1960 we discovered how, in combination with that, to do
justice to the scope rules of Algol 60. The definition of Algol makes
extensive use of recursive productions. A run-time system for a lan-
guage like Algol allowing unrestricted procedure calls has to contain
some kind of a stack mechanism. If a subroutine/procedure/ method
calls itself recursively it is necessary to store return addresses and
local variables in such a way that they are not overwritten when
the next call of the subroutine is executed. Correspondingly what
has been stored must be made available on return from the previous
deeper level.

The term recursive was spread from the area of decidability theory. It seems to
have returned to computing from this direction. In a session on the history of
Algol 60 John Backus was asked where the metalanguage in the definition of Al-
gol 60 came from and whether it was influenced by linguists like Chomsky. John
Backus answered that he had attended a class of Martin Davis where the work of
Emil Post and the notion of productions was presented. Backus’s metalanguage
was further developed and simplified by Peter Naur in the classic Algol 60 report
[1].

As for the procedure calls, Donald Knuth gives several historic references [8]:

In 1947 A M. Turing developed a stack, called Reversion Storage,

55



for use in subroutine linkage. No doubt simple uses of stacks kept
in sequential memory locations were common in computer program-
ming from the earliest days, since a stack is such a simple and nat-
ural concept. The programming of stacks in linked form appeared
first in IPL, as stated above; the name “stack” stems from IPL termi-
nology (although “pushdown list” was the more official IPL wording)
and it was also independently introduced in Europe by E.W. Dijkstra.

In a 1947 paper Harry D. Huskey describes a stack for storing return addresses
of subroutines, referring to a group headed by A.M. Turing [7]. Huskey was
for a couple of months a visitor to Dijkstra’s group in Amsterdam at the time of
Dijkstra’s use of a stack in 1959. This may be an indication that the work of 1947
influenced Dijkstra.

With list processing, the use of recursion was spread. Data structures defined
recursively could be handled, now that recursion became available in general
programming languages. The ideas of structured programming, transparency of
code and proofs of correctness also favored recursive definitions.

3. Algebraic expressions and tax avoidance. In a different context, the stack
was invented independently by F. L. Bauer and K. Samelson [2] working on the
fundamentals of mathematical notation. Their work led to hardware implemen-
tations of stacks in the computers KDF9 and B5000.

According to Knuth, the stack principle was first used in calculations of inventory
value in business during the 1930-ies.

4. The implicit stack. But of course the stack principle is older. The situation
where we have to postpone one action because another one has to be completed
is a basic human experience, and can thus be expected to show up in folk litera-
ture. I will illustrate by a cumulative tale.

When told, each incident of the tale is put on top of a stack and the current stack
content is retold after each new addition. In the last paragraph, the stack is
emptied and the tale is brought to its conclusion.

Such tales were spread over Africa and India before Western colonization. So
this is where the search for the origin of the stack ends. The stack is a part of
human culture. We may conclude that the stack is indeed “a simple and natural
concept” and we should not be surprised that it has found its way into computa-
tion.
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While it cannot be said that programming language semantics is a real jungle,
it is fair to call it a diverse ecosystem. Axiomatic, operational and denotational
semantics (of various kinds) populate this realm. This variety demands an expla-
nation, and it will probably not be simple.

Nevertheless, some reasons for this diversity have been advanced [10]. The tra-
ditional divide between formalism and Platonism in mathematics has been put
forward as one of the sources of the different semantic approaches [9]. Roughly
speaking, denotational semantics is said to lean towards Platonism, while oper-
ational semantics towards formalism, both with some caveats.

Nevertheless, these are not the only reasons for diversity. Another major force
behind the flourishing of semantic approaches in the 70 was the search for tech-
niques for improving software reliability which fuelled the development of ax-
iomatic semantics (already in the scene since the end of the 60 [3, 5]). Axiomatic
semantics defines the meaning of programs by means of an external language (as
did initial attempts at operational semantics), but this aim is not reached through
translation, and thus axiomatic semantics is set on very different grounds.

Axiomatic semantics does not look necessarily for explanations of programs’
meanings, but for formal tools to verify software. Verification means hear a for-
mal proof that a program (written in an ideal or in a “real” computer language)
meets the requirements it was designed for. So, the most common product of
an axiomatic semantics is a “logic of programs” for conducting such proofs. A
related approach is formal specification and derivation of programs, which also
relied on a particular formal semantics.

The so-called “software crisis” of the mid 70 was a strong stimulus for this effort.
It was expected that formal tools would help to produce more reliable software
which in its turn would help overcome or at least soften the software crisis.

Formal methods for verifying programs experienced a boom from this period
(Dijkstra’s discipline [2], Gries’s Science of Computer Programming [4]).

Axiomatic semantics are themselves quite diverse and this diversity can be some-
times a major weakness. There are different systems based on the language they
target or the logical language they are built upon. They also differ on the prop-
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erties of programs they can prove. As a consequence, is not so easy to evade the
accusation of being ad hoc systems.

There have been efforts to eliminate this ad hoc appearance by grounding logics
of programs to a more abstract foundation. An obvious candidate for this foun-
dational role is denotational semantics. One of the most ambitious attempts is
Abramsky’s domain theory in logical form [1], which intended to derive logics of
programs directly from denotational semantics. In its aim to unify two (kinds of)
semantic models, it has some parallel with the search for fully abstract semantics
(unifying operational and denotational semantics) [6, 7].

Domain theory in logical form is based on the idea that “given a denotational
description of a computational situation in our meta-language, we can turn the
handle to obtain a logic for that situation”, as Abramsky himself explains [1,
p. 1]. This is done by using Stone’s duality [8]. The denotational side of the
semantics takes away the ad hoc flavour of the resulting logic and hence brings
together the best of two worlds (at least in theory).

In a way analogous to full abstraction’s unification of two semantic paradigms
(the denotational one and the operational one), domain theory in logical form
shows that the opposition between the very practical, software engineering-
based approach of axiomatic semantics is not totally unrelated from the ex-
tremely abstract style of denotational semantics and that the entities populating
both universes have not so obvious (though not less real) connections.
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Programming languages has been for long undervalued by computer scientists
and historicians of the discipline as a characterizing asset. Anyway, secondary
literature starting from Mahoney’s historical papers, has given an account of
programming mostly in terms of its autonomous status inside the computing
discipline, of the multiple features in programmers’ work, and of software evo-
lution, with the “software crisis” as the key moment. Nowadays many program-
ming concepts seem evident, but top researchers and programmers had to face
serious difficulties because nothing was obvious a priori. At the beginnings dif-
ficulties were mainly in developing concepts and techniques without inherent
preceding work, later on other difficulties arose by the attempt of adopting en-
gineering methods. However, programming languages have been considered
a creative and somewhat artistic enterprise, but its scientific features seems
greater in many facets, relating basically to logical concepts and reasoning dy-
namics, and to mathematics, as Dijkstra continuously promoted. Following some
pioneering ideas, and with an insight from the general history of technology, the
first aim of the paper is on the relation between the artistic and the scientific
part, and on the contributions attributable to them.

The history of mathematics shows that the process of development of models for
solving problems has been quite long, with constantly improving notations and
increasing number of concrete and abstract problems which has been solved.
But until the emergence of computer science discipline, notations were intended
just for taking a picture of the situations, thus considering mathematics, and
logic as well, also the highly developed ones, as static processes. The dynami-
cal part of performing operations, calculating functions, executing solving algo-
rithms was leaved to the ability of the human mind. Instead, as Mahoney [8] sug-
gested, software “is constructed with action in mind”. In this sense, one purpose
of the paper is to show that one of the main concerns of computer languages
is properly epistemological, for its normative decision about how the dynamic
mathematical (and logical) processes should be performed, how they have to be
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described, and under which ontologies. For example, in the 1950s it was deci-
sive the idea that computers could be reasoned about as symbol manipulators,
rather than number crunchers.

The languages built through various analyses, have had wide differentiations
(detectable also by a syntactical investigation) due also to the little attention that
programmers have usually given to the details of distinct but seemingly similar
attempts. But, nonetheless, they have come to share many core ideas, such as
recursion, the use of statements with the same meanings, the use of structured
data and procedures, and the same different levels of abstraction. On a more
general overview, some models have been taken by other sciences, mainly logics,
mathematics and engineering, while other models built in here have been used
outside the computing discipline, for example the flowchart diagram descriptive
model nowadays used almost everywhere, or the model of the cognitive mind
borrowed by neuroscientists.

Lastly, I will focus briefly on the fact that history of programming languages is
constellated by events which pushes to regard it, as indeed we do with science
and technology, as a socially influenced scientific and technological progress. Its
evolution, since 1950s, has been influenced by some top researchers, which in
some cases have had the habit of regarding themselves and behaving as mem-
bers of a priesthood, with mysterious skills and knowledge too complex for or-
dinary people. This situation has had its counterpart in the general low level
of education of incoming programmers, whose question of professionalization
have been investigated by Ensmenger and others [5], [6]. But also in this set of
practitioner creativity and imagination in applying efficiently the tools provided
has played a fundamental role, while plans of making languages accessible to a
wider population have been often regarded with hostility and derision.

From one side, as we know, a constructionist approach has had a great role in
programming evolution, invited by the technological counterpart of program-
ming (programming techniques involved mechanical work as well); from the
other side, its process in the establishment of new tools has lived under a seem-
ingly continuous revolutionary process. When new ideas were proposed, usually
the acceptance was not provided by their concrete usefulness, or by the ele-
gance of the new systems, or by other factors relating to an objective evaluation
of their qualities, but instead heavily connected to the energy and influence of
proponents and their companies.

Social factors are probably the only feature that we can consider in analogy with
the general idea of scientific revolutions, in which the historical-epistemological
analysis shows the presence of knowledge paradigms within science. Some sci-
entists have tried to bring together programming paradigms (sequential, struc-
tured, object oriented, and so on) to Kuhnian ones, influenced by the similarity
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of terms, but I think it would be more correct to speak of simple evolution of
research programs, in line with Lakatos’ analysis, and it would be fairer to speak
simply of “programming styles” (as indeed some actually do). In my opinion, the
basic paradigm of programming has not changed over the past 60 years, as it
is strongly linked to the type of computation on which it is based, namely the
type of physics, and therefore technology, on which the mechanisms of calcula-
tions are performed. And computing technology, as we know, is still based on
Newtonian physics.
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Digital and analog computation have traditionally been framed within simple
models of discrete and continuous time. In this paper we consider a richer view
of time and show how this leads to an extended view of computing.

We motivate this by discussing time in sound and hearing, ‘aural arithmetic’ [5] -
how time and arithmetic may have been conjoined in pre-literacy periods of both
early Greek and non-European histories, and why, with the invention of signs
and alphabets, time becomes anathema for arithmetic, as if the latter needed to
be purged of it (the Western hegemony of the eye, the shift away from orality
and the power of geometry to freeze concepts). We continue our tale of time in
computing with the two Turing Machines.

A machine executes a computation in time. When we move to formal description
in the theory of automata, we refer to sequences of configurations. These could
be steps in a grammatical derivation, or a sequence of Turing machine configura-
tions (state, tape content, and head position). These sequences are sets indexed
by the natural numbers (N). These whole numbers are our time indices. This is
discrete time.

Turning to the ‘other’ Turing machine, the reaction-diffusion network that Turing
used as a proof of principle for a morphogenesis model [8], this can similarly be
viewed as executing a computation in time [3]. We again have a sequence of
configurations - concentrations of morphogens, their smooth changes unfolding
along a time axis. Thus these configurations are a set indexed by the set of real
numbers (R). These real numbers are our time indices. This is continuous time.

Now turn away from formalism and look at physical devices or organisms inter-
acting with an environment - transforming, representing, interpreting, comput-
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ing. If we can study these systems and come up with a notion of states, we shall
then want to track them through time - i.e. index these states by N or R. But
must we be limited in this way?

We could ‘break’ time by three increasingly radical moves. First, we could move
from simple, discrete or continuous time to non-standard topologies of the ‘time
line’, such as the hyperreal number system *R (which includes infinitesimals and
infinite numbers), or chose other non-metric topologies. Second, we could turn
from the set-theoretic formulation of time as consisting of a set of points (‘points
in time’) to deal with fusions or other non-set theoretic notions of aggregation
[6]. Third, most radically, we could question the applicability of the notion of
state.

Examine the use of the word ‘state’. A state is a ‘snapshot’ that maximally deter-
mines future behavior. The notion of state itself is thus bound up with our con-
ception of time. When describing a complex configuration of interacting objects
in the world we cannot help but use the word ‘system’, and identifying material
with a system comes with a commitment to the existence of certain states. Fur-
ther, the assignment of a configuration of objects in the physical world to states
is an act of interpretation involving an interplay of convention with physical con-
straint. This leaves room for a kind of skepticism in which a ‘hermeneutic demon’
sets up unconventional state assignments and seems to change our computation
without changing anything physical [4].

We suggest that one can pull back from the notion of states (indexed by a set
that represents time) and move to a broader, more biological re-imagining of
computation. The clue comes from the aural arithmetic idea we opened with.
Superficially, it seems like sound is a mere continuous signal in time. But the
‘Fourier tradeoff’ of time versus frequency (mathematically equivalent to the
uncertainty principle in quantum mechanics) is suggestive here. It surprises
many people who are unfamiliar with the theory of sound that, although it makes
sense to have a ‘middle C’ note played for the duration of a minute or a second,
it makes no sense, even in principle, to have a ‘middle C’ note that sounds only
for a picosecond. The superposition of waves is the root of this tradeoff.

We relate this back to computing by reframing a recent class of alternative com-
puting models, now called reservoir computation [2];[7]. In reservoir computing
models, ripples of inputs create waves of context which reverberate in a reser-
voir, which could be anything from a recurrent neural network to Turing’s mor-
phogenesis machine. In a subsequent stage of computation, a more conventional
device (a symbolic computer program, a single-layer perceptron) functions as a
teachable hermeneutic demon, sorting out the ripples in the reservoir to define
meaningful states. This presents interesting tradeoffs between programmability
and adaptability, cf. [1]. We suggest that this is a deep idea in computer science:
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reservoir-based computing breaks us constructively out of the Turing model to a
biocomputing-based approach to computing-in-life.
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Computer science in France: A controversial emergence
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How was computing constructed and recognized as a science? The case study
of France offers an example of an average, mid-size scientific scene, which may
be therefore representative of the emergence process of informatics in other
countries, or at least provide an element for international comparisons. As ‘com-
puting’ was not a defined category until about the late 1960s, at least in the
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French University, one has to study computer-related activities and representa-
tions at different scales, by changing focus, from the trajectories of individuals,
of project teams or local laboratories, to the national or even international level
of learned societies, through the decision-making committees or bureaucracies
within science policy agencies. My main sources are the archives of these per-
sons and organizations, a collection of some 100 interviews, and the relevant
published literature (see part 3 of [1]).

One particularity of the French case is that, contrary to most other advanced
countries, no academic or state laboratory succeeded in building a computer
during what we may call the ‘pioneer era’, before 1960. This has been described
already in other publications, so I will not analyze it further here, but it is im-
portant to remember that the post-war computer effort in France started with
a series of failures, which for a while made this new field even less attractive
to academic talents, and delayed practical experience with stored-program ma-
chines.

From applied mathematics to informatique. In the 1950s, French academic
pioneers of computing devoted their main efforts to develop numerical analysis
and to assert its legitimacy, against the dominant pure mathematics, with sup-
port from non-academic allies such as the defense and the electrical industry.
After 1955, stored-program computers were acquired from the industry as tools
for this low-status, struggling sub-discipline. A first step to define computing,
what it was and even more importantly what it was not, was perhaps the strong
rejection of cybernetics, which had been a useful brainstorming exercise for a
short while, but became considered a topic for journalists and woolgathering
babblers.

Toward 1960, new, non-numerical applications of computers were investigated,
such as language translation or information retrieval, then artificial intelligence,
while the quest for better programming methods led to R&D on languages (par-
ticularly Algol), on compilers, then on operating systems. These various re-
search programs broadened the computing field, as in turn they called for di-
verse branches of mathematics, in algebra and in logic. In the same move, the
computer, its software and the structure of the information they handled, be-
came attractive topics for scholars from different fields, from formal linguistics
to graph or information theory. In other words, computer scientists broadened
the scope of their scientific interests, while computing attracted a growing pop-
ulation of researchers with various intellectual agenda.

At this stage, computing began to gain autonomy from applied mathematics, as a
few militants endeavoured to promote it as a new discipline. While they could not
hope yet to impose it at the core of the academic system, they followed what we
may consider a ‘peripheral strategy’. Beside expanding computer laboratories
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and chairs in a handful of universities, they created learned societies (Associa-
tion franaise de calcul et de traitement de I'information, 1962); grouping French
computer experts from all professional backgrounds, these societies published
journals and organized annual conferences, discussed about standards and good
practices, and participated in international organizations, thus giving computing
many characteristic features of a ‘normal science’. From 1963 they also used a
governmental agency dedicated to technology policy, DGRST, where they created
a computing committee to fund their research projects and to spread their views
throughout the administration. Beyond their scientific arguments, their most
convincing assets were the growing need for computing power and the massive
demand for trained computer engineers in the nation’s economy, which required
that higher education invested in this field.

Tensions. At the level of practice, computer users and researchers (who began
to call themselves informaticiens in the mid-1960s) were caught in a tension
between two sets of problems:

* The immense, fascinating potential of applications and experiments which
they perceived in computers, but whose practical achievement demanded
vast R&D efforts in programming, in numerical analysis and in software
methods.

* The material defects of first generations computers - poor reliability, mi-
nuscule memory size which limited programming capabilities, etc. — prob-
lems which were the business of the manufacturers’ sales and technical
agents, and were only practical constraints and motives of frustration, void
of any intellectual interest, for academic informaticiens.

Another tension regarded the management of computing facilities, in which di-
verging interests tended to oppose computer scientists and users from other
disciplines. Users simply needed a reliable, cheap and fast computing service.
Yet computer scientists wanted to keep control on the machines, giving priority
to their research and teaching tasks over the common users, whom they encour-
aged to learn Fortran or Algol to write their own programs and to run them on
the computer in a ‘self-service’ mode.

In fact, computer scientists were caught in a contradiction. They had benefitted
from the resources of their computing center - note that computer science was
a rare case of a research field which had laboratories long before it was recog-
nized as a discipline: computer science burgeoned in a corner of the computing
center, and needed its resources to blossom. Yet they took great care not to iden-
tify themselves with the computing machine, in order to assert the theoretical
nature of their investigations, as opposed to the technical nature of hardware
and programs. If they wanted to promote computing as a science, they were
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bound to accept the separation of research labs and computer centers. Such
separation was progressively imposed by scientific authorities.

Enters mathematical logic. It was only in the mid-1960s that mathematical
logic, particularly the foundational works on computability published 30 years
earlier, appeared commonly in the references and bibliographies of publications
by French computer scientists. Why such a late ‘discovery’, instead of a linear
process which would have proceeded from mathematical theory to computing
technology - from the abstract Turing machine to material computers? Three
interrelated explanations can be offered:

1. logic had been eclipsed from the French mathematical scene since Jacques
Herbrand’s premature death in 1931, and nearly banned from mathemat-
ics by the Bourbaki group;

2. until the early 1960s, computer experts were focused on solving techni-
cal problems or developing numerical analysis, so that mathematical logic
made little sense to them;

3. however in the mid-1960s, in a rapidly evolving context, they felt the need
to better understand what they were doing, to cope with the growing com-
plexity of computer systems, to formalize what they were teaching in or-
der to elaborate informatics curricula and to assert the scientific ‘nature’
of computing. It was only under these constraints that the foundational
works on computability published in the 1930s made sense to them.

The institutionalization of computer science was a gradual, controversial en-
deavour, marked by visible milestones: the founding of the first computer de-
partments (1964), the creation of master’s diploma in informatique (1966), the
setting up of specific committees for computer science at national level in the
university system (1972) and at the CNRS (1975).

From then on, computer science was institutionally stabilized for a quarter of a
century. It took then about as much time to be recognized at the Académie des
Sciences and at the College de France, the two highest institutions of French sci-
ence, where elections rest exclusively on scientific values, not on socio-economic
pressure. After 2000, computer science conquered wider academic recognition;
with some 800 full professors and 2.000 associate professors in 2010, it became
the major discipline in French higher education by the number of faculty staff.
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Artificial Testimony
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Artificial testimony consists of assertions, offered to a hearer as a source for
belief, but created by a technological artifact and having as a whole no single
human source. In this paper I consider the implications of artificial testimony for
philosophical theories of testimony and its justification. Here are a few examples
of artificial testimony:

* An on-board automobile navigation system tells you that you have arrived
at your destination;

* Arobot reports its location in your house and its upcoming movements [5];

* A monitoring system gives a physician a morning update about the condi-
tion of an infant in a pediatric intensive care unit [7].

These utterances are remarkable because they are more than just human utter-
ances delivered via technology. They have an original linguistic content gener-
ated by an artifact.

I begin by sketching an account of linguistic agency that is broad enough to
accommodate computer speech. A speech actant is the authorial source of a
linguistic message, where this is neutral between human speakers and other
original sources of linguistic messages. Some computers such as those men-
tioned above have the power to create or assemble somewhat original mes-
sages adapted to new contexts. The things they say on particular occasions are
not fully mechanically foreseeable by their designers, manufacturers or owners.
(Note that they might be ‘conversationally’ predictable, in something like the
way that human speech is sometimes predictable. But this is not a sign of failure
to manipulate language authorially.) As technologies have become more capable
of integrating observations of reality, complex symbolic representations (e.g.,
maps, databases, or images), make word choices, and assemble grammatical
sentences, they have become more autonomous and spontaneous in producing
spoken and written messages [4]. Background machine intelligence enhances
these capacities. Such technologies are linguistic actants, capable of authoring
artificial speech.

I then go on to explain why these phenomena raise problems for what I call in-
tentionalist accounts of the epistemology of testimony. One of the goals of an
epistemology of testimony is to explain why one can gain knowledge or war-
ranted belief by relying on the assertions of others. Philosophical accounts of
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testimony are often framed in terms of the relations between persons, or as de-
pending on mental attitudes like beliefs or intentions that are normally thought
only to be possessed by persons. For example, Paul Faulkner holds that beliefs
about speakers’ intentions (e.g., about their sincerity, or on a later view, their re-
sponsiveness to affective trust) are central to one’s warrant for accepting their
testimony [1, 587]; [2, 899]. Jennifer Lackey discusses a family of “Belief Views
of Testimony” which she attributes to a score of prominent contemporary epis-
temologists [3]. On belief views of testimony the hearer’s warrant for testimony
depends on the warrant the speaker has for the belief expressed by that testi-
mony, as expressed for example in Alvin Plantinga’s claim that “a belief on the
part of the testifiee has warrant only if that belief has warrant for the testifier”
[6, 86], quoted in [3, 77]. If we allow that artificial testimony is testimony, this
appears to fit poorly with intentionalist accounts. Since artificial linguistic ac-
tants do not have beliefs, on these belief-based views it is impossible to have a
justified testimonial belief on the basis of artificial speech.

I discuss several possible responses to these problems. The first is to cast the
intentional net wider, extending the conception of whose intentional states count
for the sake of establishing testimonial warrant. Specifically, an account of tes-
timonial warrant can make reference to the intentional mental states of the de-
signers and/or deployers of artificial linguistic actants, rather than those of the
linguistic actant itself. This strategy could be applied to belief and allied cog-
nitive states, or to intentions and other conative states. The second response
focuses instead on the reliability of the utterances themselves, or the system
that produces them. However, reliabilist accounts of testimony must be able to
explain what counts as a relevant item to be evaluated for reliability. This poses
special problems in the case of artificial testimony. In the end, I will argue for a
view that combines an intention-based condition with a proper function condition
implying reliability.

In the concluding section I discuss the importance of the design of “articulate
machines” in relation to the warrant we have for believing them, and I consider
an argument from Bernard Williams that the capacity for sincerity and insincer-
ity (not possessed by most computing machines, it would seem) is of fundamental
importance to how we think about the reports of such machines.
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The computer between Computationalism and Cybernetics: the crucial role
of Turing and von Neumann, and why they were ignored
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It is difficult to underestimate the role of computability theory in the birth of
computer science. The project of the computer as a stored-program electronic
machine is strictly intertwined with the definition of the concept of algorithm,
via an identification of it with all the processes that can be computed by a Turing
Machine. These results were used (almost ten years later) as the theoretical
basis for the logical structure of the computer (see von Neumann First Draft in
[2], Turing’s Proposed electronic calculator in [1]).

The central role of Turing Machines as a general characterization of a mecha-
nized process (a process that can be performed by the Machine) offered a frame
and a clear explanation of what can be calculated and what cannot and relied on
the complex concept of emulation, that later evolved in the broader concept of
simulation.

The problem, however, is to establish the real nature of that simulation, the types
of procedures that can be represented by the Turing Machine’s style devices; at
what conditions those machines can emulate or better simulate intelligent behav-
iors and finally which is the nature of a so-called ‘intelligent procedure’. Is it re-
lated exclusively with the manipulation of symbols according to well-established
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rules? Is it related to self-reproducing automata, devices capable of replicate
themselves according to the management of complex organization layers? Is
it linked with interactive capabilities of the machine to communicate with the
human operator? Is it represented by the possibility of educate a network of
unintelligent nodes, according to weight evaluation of the effect of positive or
negative stimuli?

It is peculiar that both Turing and von Neumann were fascinated with the an-
ticipation of different kinds of machines more related to cybernetic relational
approach to mechanical devices, than to the computationalism centrality of the
first years of development of computer science.

Turing was attracted by the English Cybernetics group called the Ratio Club
([4]) and later developed an intense interest for mathematical biology, known at
the time as morphogenesis, while von Neumann was involved in the Macy’s Con-
ferences and was particularly interested in self-reproducing automata. These
automata should have been capable of creating a complete copy of themselves
with the help of the complexity of their inner structure.

As far as simulation was concerned, they showed a critical attitude about the in-
terests in the computational device whose logic structure was a reproduction of
the rules invented within the logical paradigm during the Thirties of last century,
while were attracted by other paradigms of artificiality, better characterized by
an integration of natural/artificial models.

Turing’s and von Neumann’s approaches were in tune with the Cybernetics vi-
sion of machine and their close relationship with natural organisms. At the be-
ginnings the supporters of the different perspectives met the same conferences
(see for example the Macy’s conferences 1946-1953, see [5], the Dartmouth fa-
mous 1956 Conference on Artificial Intelligence, see [6] and the NLP Mechaniza-
tion of Thought Conference held in 1958, see [3]), while the divergent visions
were later stigmatized by the establishment of the so-called scientific agenda
about which were the major objectives, and the best methods to reach them.
However Turing and von Neumann belonged by default to the Al group, because
of their contributions to the theoretical basis of computer science, their later
more critical contributions (see [7], [8], [9]) were almost ignored, until recently,
by the scientific community. At the core of the dispute between Al and Cyber-
netics, according to me, there were not only the different metaphors of the com-
puter as a simulator respectively of the mind or of the brain - as the conflict was
normally described by historians - but a dissimilar perception about the relation-
ships of the device with logic and of the eventual organic integration between the
machine and the human operator. The computational Al supporters considered
language as a tool for representing information, while Cyberneticians considered
language as a tool for communication and as the basis for the human-machine
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integration. Viewed in this perspective the center of the discrepancy was con-
cerned with the role of simulation in machines. According to Cyberneticians
mechanical devices and organisms were similar with respect to communication
and control practices, while Al scientists such as John McCarthy, Marvin Min-
sky, Herbert Simon etc. wanted to simulate the intellectual capabilities of the
human mind by a symbolic representation of knowledge and its organization in-
side the machine. They thought in terms of automation, while Wiener and the
other members of the Cybernetics group (including Turing and von Neumann,
though with different twists) were concerned with feedback and other interac-
tive mechanisms, both in natural organisms and automata that allowed a better
integration of the different agents of the communication processes.
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Table making deserves a place of its own in the history of computing and infor-
mation technologies. As pointed out by Campbell-Kelly et al. [1]], the historian’s
challenge is not to present the tables - mathematical, statistical or astronomical
- as a static artefact, but to make sense of them as an instrument shaped by its
makers and able to shape the communities of its users.

The Statistical Tables for Biological, Agricultural and Medical Research [2], pub-
lished for the first time in 1938 and co-authored by the statisticians Ronald
Fisher and Frank Yates, represent an interesting case study in this perspective.
Throughout the following forty years these tables were used as a computing tool
for the application of analysis of variance and experimental design, the statisti-
cal methods developed by Fisher during the 1920s, while chief statistician at the
agricultural research station of Rothamsted.

I want to argue that the Statistical Tables were not a value-free collection of
numbers, but that they were planned and computed as an instrument for the dis-
semination of Fisher’s statistical methods in biology, agriculture and medicine.
In so doing they embodied a form of power and authority and in this sense I will
call them a political artefact, after Langdon Winner [3].

The publication of a book of statistical tables was not a novel event in Britain.
Since 1914 the Biometric Laboratory headed by Karl Pearson at University Col-
lege London had issued a collection of tables for statisticians and biometricians
[4]. But the Statistical Tables made a clean break with this tradition focused on
correlation and curve fitting. In Fisher’s and Yates’s book the balance is shifted
towards significance testing — at the beginning of the collection there are the
tables of Student’s, chi-square and z distribution used for making tests of signif-
icance - and the randomised design of experiments is presented as integral part
of a statistical approach offering ad hoc instruments, such as Latin squares and
random numbers, in order to apply it.

Fisher himself, head of the Galton Laboratory at University College London dur-
ing the 1930s, led in person the making of the Statistical Tables along with Frank
Yates, at first his assistant at Rothamsted and from 1933 his successor as head of
the local statistics department. The first edition of the book was a slim volume of
90 pages with 34 tables preceded by a lengthy introduction that explained how
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the tables had been computed and how they should be used. From 1938 up to
the early 1960s a new edition of the book appeared more or less every five years.

The collection had a self-consistent structure. Ideally all the tables needed for
the application of analysis of variance and experimental design to agriculture,
biology and medicine were included. Since the first edition the book was sold
at a modest price, affordable even for users like agronomists, biologists and
physicians that devoted only a small amount of their research budget to tools
for scientific calculations. Moreover, the tables were planned and computed in
such a way that a research worker supplied only with a slide rule or a poor desk
calculator could work through his or her data using the tables.

Langdon Winner has pointed out that artefacts can have politics, i.e. they can
have embedded in their design forms of power and authority not explicitly de-
clared. In evaluating technologies he suggests it is necessary to go beyond their
immediate use and examine “whether a given device might have been designed
and built in such a way that it produces a set of consequences logically and tem-
porally prior to any of its professed uses” [3]. The artefacts that Winner has in
mind are made of concrete and steel, but computing instruments like statistical
tables should not be exempted from this scrutiny. They cannot be considered
neutral just because they are the outcome of mathematical knowledge and num-
ber crunching. Quite the opposite, they should be carefully cross-examined be-
cause tacit aims and goals are not as evident in a collection of numbers as they
may be in a material artefact.

The many research workers and statisticians who bought the Statistical Tables
as a computing tool were sold at the same time a peculiar vision of statistics.
The collection of tables had been planned as a complement to Fisher’s main
textbooks on statistics, Statistical Methods for Research Workers and the Design
of Experiments, and the choice to tabulate the probabilities in the tables only
for selected values contributed to spread the 5 per cent threshold for statistical
significance that Fisher had recommended in Statistical Methods, linking further
statistical computing and statistical theory.

Moreover, unlike Karl Pearson, Fisher and Yates adopted a liberal policy in re-
lation to their computing effort. Statisticians and research workers that ap-
proached them and their publisher, Oliver and Boyd, with requests for reprinting
tables - often the ones of the chi-square and Student’s distribution — were usually
authorised subject to a proper acknowledgement. Endless is thus the number of
publications in which tribute was paid to Fisher and Yates and in which their
tables were replicated strengthening further the authority of the original collec-
tion.

I claim that the careful planning of the Statistical Tables and the liberal idea of
copyright endorsed by their authors made the book not only a successful comput-
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ing tool, but also a political technology in which a commanding vision of statis-
tics was embedded. In order to give evidence for my argument I will examine
the structure of the collection of tables, its making throughout six editions, and
its reception among research workers and statisticians who provided advice to
agronomists, biologists and physicians.
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Computability and Arithmetic. Intuitively, a subset of N is computable if there
is a Turing machine (finite procedure, idealized computer, algorithm,...) that
fully describes this set. An example of a non-computable set is the halting prob-
lem. The latter procedure just determines whether a given Turing machine halts
for a given input. See [7] for an introduction.

Emil Post’s celebrated theorem ([7, Theorem 2.2]) connects first-order logic and
computable sets. We consider the fourth item.

Theorem 1 For n > 0, we have

AeNn & A<y O™,

Thus, a set A is computable if and only if A is A;. Moreover, a set A is A, if and
only if A can be computed on a Turing machine with a finite number of queries
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to the halting problem. The limit lemma ([7, Theorem 3.3]) provides another
formulation of A, sets.

Theorem 2 A set satisfies A <7 (" if and only if A is limit computable, i.e. there
is a computable sequence f, s.t. A = {n € N : lim,, fm(n) = 1}.

Computability and Nonstandard Analysis For an introduction to Nonstan-
dard Analysis, we refer to [2]. For our purposes, it suffices to know that, using
techniques from Logic, the set N can be extended with extra elements that are
larger than all n € N. The resulting set is called *N and any number w € *N\ N
is called infinite.

In contrast, the original numbers n € N are called finite. When working with
Q instead of N, the inverse of an infinite number is called an infinitesimal. It is
straightforward to extend the domain and image of a function f : N — N to *N.
We use the same symbol f to denote this extended function.

The following transfer principle plays an important role in Nonstandard Analysis.

Principle 3 (II;-transfer) For all ¢ € Ag, we have

(VYni,...,nx € N)p(n) = (Vni,...,nr € "N)p(n)

Note that IT;-transfer is equivalent to several theorems of ordinary Mathematics
(See [4, Theorem 2] and Theorem 9 below).

Definition 4 (w-invariance) A function f : N x N — N is w-invariant if

(Vn € N)(Vew, ' € "N\N)[f(n,w) = f(n,o")].
A set A C Nis w-invariant if A = {n € N : f(n,w) = 1} for an w-invariant f. It
can be shown that the value of an w-invariant function is finite for n € N and can

be computed by a finite procedure. In particular, we have the following theorem.
We refer to [6, 4, 5] for proofs.

Theorem 5 A set A is A; if and only if it is w-invariant.

Thus, the classical notion of computability is captured exactly by w-invariance.
Furthermore, we have the following theorem.

Theorem 6 (Hyperlimit lemma) A set A is in A, if and only if A is hyperlimit
computable, i.e. there is a computable sequence f,, such that, forallw € *N\ N,

A={neN: fu(n) =1}.
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Corollary 7 The hyperlimit lemma is equivalent to II;-transfer

In light of Theorem 2, II;-transfer is closely related to the halting problem. As
a matter of fact, II; -transfer provides an w-invariant procedure to determine the
truth of ¥;-formulas.

Another connection between II;-transfer and the halting problem is given by the

following, to be compared to Theorem 1.

Theorem 8 The II;-transfer principle is equivalent to the statement ‘For every A
in Ao, there is an w-invariant set B such that A = B’.

Thus, a A> set becomes computable if we have access to Il;-transfer, and vice
versa. This perfectly mirrors the situation in Theorem 1 for .

As an intermediate conclusion, we observe that II;-transfer and ()’ exhibit the
same (non)computable behavior. This close connection becomes even more in-
teresting when we consider the following results from [4].

Theorem 9 The following? are equivalent to IT;-transfer.

1. An e-6-continuous function is integrable over [0, 1].
2. An e-4-continuous function attains a maximum over [0, 1].

3. For bounded e-§-continuous f, there is a solution to ¥’ = f(z,y) on [0, 1].

Thus, we observe that basic operations on e-6 continuous functions, like inte-
gration, are non-computable. However, things change when we introduce the
following notion of continuity.

Definition 10 A function f is nonstandard continuous on [0, 1] if
(Vo,y € [0,1])(z =y — f(z) = f(y)).
Theorem 11 There is an w-invariant procedure for the following operations.

1. Integrating a nonstandard continuous function over [0, 1].
2. Finding the maximum of a nonstandard cont. function over [0, 1].

3. Finding a solution to ¢y’ = f(z,y) on [0, 1] for bounded nonstand. cont. f.

2In [4], notions like ‘integral’, ‘maximum’, etc. are defined up to an infinitesimal. Ex-
ploring this topic further is beyond the scope of the current paper.
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Thus, Nonstandard Analysis provides a ‘more computable’ framework for calcu-
lus and physics. Similar results are available for Bishop’s ‘constructive’ analysis

([1, 6D).
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Computer-aided design of bridges and integrated circuits, the long established
mapping of computable functions onto recursive functions, and the fundamental
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role of computer simulations in the verification of models and theories in physics,
chemistry, and biology are examples on how ubiquitous the concepts and the in-
struments of computer science have become in the fields of engineering, math-
ematics, and natural sciences. Despite such spread and versatility in scientific
applications, the scientific status of computer science is still in question.

Computer science has been considered as the science of computers and related
phenomena [7], thus supporting the conception of computer science as artificial
science [9], namely an empirical study of the phenomena connected to com-
puters viewed as artifacts. Contrary to such empirical interpretation, computer
science has elsewhere been conceived as the study of theoretical notions, such
as information and algorithms [2]. These concepts play a central role also in the
work of Peter Denning, who advocates the scientific character of the discipline
by shifting the focus from computers to computation and considering the latter
as a domain distinguished from and with equal status as physics, society, and bi-
ology [3]. As these domains are the subject of physical, social, and life sciences,
respectively, so is computation the topic of a specific science, namely, computing.
Although agreeing with the author in considering computation as fundamental
in his endeavors, we adopt an orthogonal point of view, searching for scientific
legitimation not in the content of the discipline, but in its methodology.

If one of the defining criteria of scientific activity is experimental method, ac-
cording to the empirical sciences’ tradition, firstly we need to determine which
of the applications of computer science can be legitimately viewed as experi-
mental activity. Undoubtedly, in such analysis we need to take into account the
debate on the status and the role of scientific experiments that has been going
on in philosophy of science [8]. Then, we intend to understand the contribution
of these experiments to the empirical nature of computer science, by using them
as means to determine the position of this discipline with respect to the ones
traditionally recognized as experimental.

There are two ways to interpret the activities of computer scientists as experi-
ments:

* Programs (e.g. the above-mentioned computer simulations) are used as
experiments to provide new data about physical systems, like atoms or
galaxies, that are difficult or even impossible to investigate with direct
observation [4];

» Iterated computer-based procedures can be used to arbitrate between
competing models or hypotheses that are not dealing with a physical or
social phenomenon, but with entities that are intrinsically related to com-
puter science, like algorithms and programs.

We consider the former case as out of our scope: it provides an instrumental
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view of computer science as infra-science, according to which the discipline pro-
vides new and better instruments for experimentation in the existing sciences.
From this perspective, a computer simulation of a galaxy is an up-to-date exper-
iment in astrophysics, but provides no support in analyzing the scientific status
of computer science.

Instead, we focus on the latter activities, aimed at working with topics within the
scope of computer science, meant as the discipline of automatic computation and
information processing. Although in computer science, and computer engineer-
ing, the activities called experiments share some common features, there are
also impressive differences that make it difficult to have a common definition
of experiment. If we consider algorithms, a certain level of rigor in conducting
experiments can be evidenced [5], as some principles of experimental method-
ology, such as comparison, reproducibility, and repeatability, are concretely de-
clined. For instance, in software engineering and software testing in particular,
pieces of code are empirically probed following standardized procedures that
run them on a set of preselected input values and compare the results with the
expected outcome, to search for conditions under which the examined items do
not function properly [6]. Still, there exist other subfields of computer science,
like autonomous mobile robotics, in which experimentation has not yet reached
a comparable level of maturity. Despite the recognized importance of experi-
mental approaches, these ideas have not yet become really part of the current
practice, due to the weak awareness of experiments as fundamental elements in
the development of a robotic system [1].

The examples above show a certain degree of heterogeneity when speaking of
experiments in computer science. Rather than a single experimental method,
computer science is characterized by different methodologies for each subfield,
where experiments are performed not to confirm a general theory, but to test
whether a given system works appropriately. Our working plan is to analyze the
production of artifacts in the form of algorithms and programs, and focus on the
experimental side of this process, searching for common features in the several
subfields of the discipline. We aim at shedding some light on the possibility, de-
spite their significant differences, to individuate general experimental principles
in the subfields of computer science in the direction of a more rigorous approach
typical of mature scientific disciplines.

Acknowledgement. This work was partially supported by MIUR in the frame-
work of the PRIN Gatecom project.
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In the middle of the XIX century the reputed English scientist Alfred Smee (1818-
1877) developed the theory, which he called electrobiology. Its purpose was
to study the effect of electrical phenomena on the functioning of the human
body. Smee was primarily interested in the connection of electrical stimulation
of the nervous system and brain work. Later his research in this area became
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more philosophical than natural-scientific, and he published the book Process of
Thought Adapted to Words and Language [1], in which in particular he proposed
a plan to build an artificial system of mental conclusions modeling inner mecha-
nisms of human brains. Though Smee based the knowledge of these mechanisms
(at the time virtually unknown) on his own ideas of what they might be. Later
this small treatise with a few additions was included into the monograph The
Mind of Man: Being a Natural System of Mental Philosophy [2].

According to Smee, the mental image showing concepts or objects of the exter-
nal world arose in the minds of humans due to electrical effects on the elements
of the nervous system (nerve fibers), and each image was represented by some
combination of fibers. This combination was stored, and later when the same ob-
ject was being recognized, it was retrieved from memory. According to William
Hamilton (1778-1856), proposition expressed a comparison of concepts or ob-
jects, so to make judgments means to recognize the relations of agreement or
disagreement between two concepts, two separate subjects or a concept and a
separate subject, comparing them with each other. Smee tried to go further: “

it occurred to me that mechanical contrivances might be formed which should
obey similar laws [laws of thought - (note of the authors)], and give those re-
sults which some may have considered only obtainable by the operation of the
mind itself” [2, 39]. To find relations between concepts (i.e. actually for simulat-
ing the operation of brains), he proposed to use two original mechanical logical
machines and described them.

Relational machine was intended for presentation and comparison of concepts
based on the so called geometric series: “In order to induce a general law from
specific instances, and deduce the application of a law to a particular case by
means of mechanical contrivances, we must take advantage of the geometrical
arrangement of words formerly described, and denote each word by a cipher,
and lastly then arrange them in such a manner that each cipher may bear its
proper relation to every other cipher” [2, 40], see Fig.1.

Unfortunately, his explanations are very concise and unclear. In general, one
can understand that Smee conceived his device as a collector of knowledge,
with capability to add new facts, concepts, etc. Based on rules derived from the
laws of thought, its internal state changed, taking into account and showing all
the relations between new and previously presented concepts. If this collector of
knowledge were universal and all-inclusive, then, according to Smee, “it is thus
apparent that this mechanism gives an analogous representation of the natural
process of thought, as a human contrivance can well be expected to afford” [2,
44].

Of course, Smee knew that it was impossible to implement his idea in full scale:
“Supposing that the machine could be made sufficiently extensive for all prac-
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Figure 1: Relational Machine.

(2]

STV T e

Figure 2: Differential machine.

tical purposes, yet the labour of employing it would be so great, that persons
would soon rely upon the abilities which it has pleased Providence to give to
them, and not seek assistance from extraneous sources” [2, 45].

The second machine, proposed by Smee - Differential machine, was intended to
compare two concepts. The machine was a two-piece rectangular frame. One
of the parts had a slightly shorter length, and therefore could be slided into the
second part. Along the long sides of the frame rectangular bars of different
lengths were laid, representing the properties of some concepts. Bar of one unit
height corresponded to the presence of property, and a bar of 2 units height - its
absence. At the top of the other frame for the presentation of other terms bars
of height of 4 units were used, meaning the absence of property (see Fig.2).
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Figure 3: Relational slate.

For comparison of concepts Smee used four degrees of coincidence. If you moved
the two parts of the frame and tilted her, the bars representing the relevant prop-
erties became connected. If their total height was 2 (1 + 1), then this property
was common to both concepts, if equal to 3 (142 or 2+1), then we could conclude
that the coincidence of the properties was likely to occur, if 4 (2 + 2) the conclu-
sion that the coincidence of the properties was possible. If the total height was
5 (1 + 4), then we concluded the denial of the coincidence, etc. Smee supposed
that such device could be used in many cases. For example, he cites examples
of comparisons of testimonies and decided that “the mechanical judge” in the
civilized world would produce a sensation.

It is also worth mentioning Relational slate — the “didactic logical tool”, first
described in Smee’s book in 1875 which was intended for use in the study of
logic. It looks like a box with multiple compartments or just appropriately lined
table (Fig. 3). Depending on the dependencies of analyzed concepts, they were
placed in one or another compartment, after which a conclusion was deduced.
Smee explained that bars, representing concepts with the same meaning, were
placed in one compartment, bars, corresponding to concepts that were parts of
other concepts, were put under respective compartment, etc.

Books of Smee gained some popularity among psychologists and physiologists,
but were not recognized by mathematicians and logicians. So, Stanley Jevons
(1835-1882) learned the ideas of Smee only after invention of his own logical
machines. Jevons said: “So far as I can ascertain from the obscure descriptions
and imperfect drawings given by Mr. Smee, his Relational Machine is a kind of
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Mechanical Dictionary, so constructed that if one word be proposed its relations
to all other words will be mechanically exhibited. The Differential Machine was
to be employed for comparing ideas and ascertaining their agreement and differ-
ence. It might be roughly likened to a patent lock, the opening of which proves
the agreement of the tumblers and the key” [3, 5171.

Perhaps the unclear descriptions of Smee’s logical devices mentioned by Jevons
prevented their further investigation. For example, Martin Gardner in his clas-
sic work Logic Machines and Diagrams only mentioned them, calling the book
of Smee “strange” [4, 144]. So the paper presented is the first attempt to de-
scribe and to analyze Smee’s machines in the context of the history of logical
machines. We also want show the evident similarity of Smee’s devices with “in-
telligent machines” of the Russian inventor Semen Korsakov (1832) and the “log-
ical machine” of William Hamilton (c1840).
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The present paper considers the Max Newman collection of Alan Turing’s off-
prints (now housed at Bletchley Park) from a bibliographical perspective, and
asks several questions: what are they? what is their significance? and why are
they so rare? In the course of answering these questions, this paper will demon-
strate the bibliographic importance of Turing’s offprints, describing the nature
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of their priority over Turing’s published work in periodicals and journals, and
show why they should be considered as primary source material in the history of
mathematics and computer science. This paper will also discuss the importance
of the provenance of the collection.

What is an offprint?

The Oxford English Dictionary gives the definition: "A separately produced copy
of an article, etc., which originally appeared as a part of a larger publication."
Bibliographically speaking, this is inaccurate, and has led to much confusion. A
more accurate definition might be: "A separately produced copy of an article,
etc., which appears as a part of a larger publication; particularly those articles
which are printed as proofs for the author to correct before final printing of
the larger publication." Offprints in this latter sense have priority over the main
publication, and can have important ramifications for historians of science con-
cerned with establishing the order of publication.

Offprints of this type may often be identified from "extracts" or later separate
re-printings of individual articles by such features as textual variance, differ-
ent pagination, changes to drophead-titles, separately printed wrappers, or an
individual binding, which in the case of nearly all of Turing’s offprints, means
stapling.

In the case of “On Computable Numbers”, the offprint has the same pagination
as the final publication of the article that appeared in Proceedings of the London
Mathematical Society, ser. 2, vol. 42. London: November 12th 1936. However, it
has a separately printed half-title, and separately printed olive-green wrappers,
with the whole stapled.

What is their significance?

Although Turing had submitted his typescript for "On Computable Numbers"
to Max Newman in April 1936, Alzono Church had pre-empted his claim to a
solution of the Entscheidungsproblem in the paper ”“A note on the Entschei-
dungsproblem”, published in Journal of Symbolic Logic on 15th April 1936. None-
theless, Newman, impressed by the sheer originality of Turing’s work, persuaded
Turing to publish. Turing took the opportunity to add an appendix to his paper
with reference to the work of Church and Kleene which led to a delay of several
months - the appendix is dated 28 August. The offprint was printed in either
September or October 1936, with the final paper being ready for publication
on 12th November 1936, with the whole volume becoming available in January
1937.
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In October 1936, Emil Post submitted a paper to Church for publication in the
Journal of Symbolic Logic which approached unsolvable problems from the per-
spective of a “mindless worker” receiving instruction notes. Because his offprint
was already printed, Turing pre-empted Post.

In the case of Max Newman’s copy of “On Computable Numbers”, it was also
a chance for Newman, the mentor, to proof and introduce corrections before
finally submitting to press. Thus Max Newman’s own copy of Turing’s "On Com-
putable Numbers" not only provides the historian with a "first draft" with textual
variance, but allows the historian to see how Newman intervenes in the publica-
tion history and determine his input. In this sense, the offprint becomes primary
source material for the historian of mathematics and computer science.

Why are they so rare?

Turing’s offprints are extremely rare in institutional holdings and in commerce,
with only Bletchley Park, the Turing Archive at Kings College, Cambridge, and
a private collection having significant holdings. Over the past 30 years there
have been a reasonably large number of opportunities to acquire offprints pub-
lished by other eminent 20th-century scientists, such as Albert Einstein, Alexan-
der Fleming, and James Watson and Francis Crick. This paper proposes four
reasons why Turing’s offprints, by comparison, are extremely rare:

1. Offprints are printed in very small batches. A print run for an offprint is
usually 20-25 copies only.

2. They are ephemeral. Designed as proofing tools only, these offprints were
not encased in stout bindings, nor printed on superior paper to ensure a
degree of longevity.

3. Turing’s offprints were not widely dispersed. "On Computable Numbers"
was published when he was an unknown postgraduate, and whose work
had been pre-empted by Church. Consequently the reaction from the
mathematical world was muted.

4. Turing’s personal and professional life was chaotic. The Second World War,
and his work at Bletchley Park, interrupted what should have been a rou-
tine academic career path which would have provided more opportunities
to spread the word of his achievements. The Official Secrets Act prevented
many people outside of Turing’s close-knit circle of personal friends (who
tended to be colleagues) of being aware of the practical application of his
theoretical mathematics. And anyway, it was not in Turing’s character to
press offprints of his work onto those incapable of understanding it. In
the wake of his tragic death, any caches of offprints that he might have
retained were probably swept away.
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Conclusion

The Max Newman Collection of Alan Turing’s offprints allows historians of math-
ematics and computing science to establish priority of publication, investigate
patterns of dispersal, and see how Newman was involved in the publication pro-
cess of "On Computable Numbers". The collection owes its survival to being in
the hands of one of Turing’s closest colleagues, friends and supporters.
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Conference and Dinner Location

The conference will take place in Zaal Rector Vermeylen at Het Pand,

Het Pand
Onderbergen 1
9000 Gent

tel. 09 264 83 05

an old Dominican monastery located in the heart of the city on the banks of the
river Leie, near the medieval port with the guildhalls as its remnants.

How to reach Het Pand:

* From the railway station Gent Sint-Pieters: Take tram 1 at the railway sta-
tion (every 6 minutes) direction ‘Centrum’ (follow the directions for “Lijn
1 Centrum”). You should get off at the stop ‘Korenmarkt’ (9th stop) and
cross the river Leie via the bridge ‘Sint-Michielshelling’. Turn around the
Sint Michaels church. Het Pand is situated next to the church.

* By car: Entering Ghent from the E40 or the E17, follow the parking-route
to P7, ‘Sint Michiels Parking’. This parking is only 50 m away from Het
Pand.

The Dinner will take place at Het Pand as well on Wednesday, 9th of November
starting at 19.00h.
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Internet Access at the Conference Location

Make a wireless connection with "UGentGuest". If you have set up to request an
IP address automatically, you will receive an IP address starting with 193.190.8x.

Now you are connected, but not yet authenticated. You should start a web-
browser and you will be redirected to a logon screen. Enter the following user-
name and password:

Username: XXXXX
Password: XXXXX
After correct authentication you can use the Internet connection.

Your connection to this wireless LAN is not encrypted To protect your personal
data, please use encrypted connections like https, imaps, ssh etc. or a VPN
client.

You're not allowed to pass on the login information to others.
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